skip to main content


Title: Adding Tree Rings to North America's National Forest Inventories: An Essential Tool to Guide Drawdown of Atmospheric CO2
Abstract Tree-ring time series provide long-term, annually resolved information on the growth of trees. When sampled in a systematic context, tree-ring data can be scaled to estimate the forest carbon capture and storage of landscapes, biomes, and—ultimately—the globe. A systematic effort to sample tree rings in national forest inventories would yield unprecedented temporal and spatial resolution of forest carbon dynamics and help resolve key scientific uncertainties, which we highlight in terms of evidence for forest greening (enhanced growth) versus browning (reduced growth, increased mortality). We describe jump-starting a tree-ring collection across the continent of North America, given the commitments of Canada, the United States, and Mexico to visit forest inventory plots, along with existing legacy collections. Failing to do so would be a missed opportunity to help chart an evidence-based path toward meeting national commitments to reduce net greenhouse gas emissions, urgently needed for climate stabilization and repair.  more » « less
Award ID(s):
1802893
PAR ID:
10318147
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
BioScience
Volume:
72
Issue:
3
ISSN:
0006-3568
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Severe drought can cause lagged effects on tree physiology that negatively impact forest functioning for years. These “drought legacy effects” have been widely documented in tree‐ring records and could have important implications for our understanding of broader scale forest carbon cycling. However, legacy effects in tree‐ring increments may be decoupled from ecosystem fluxes due to (a) postdrought alterations in carbon allocation patterns; (b) temporal asynchrony between radial growth and carbon uptake; and (c) dendrochronological sampling biases. In order to link legacy effects from tree rings to whole forests, we leveraged a rich dataset from a Midwestern US forest that was severely impacted by a drought in 2012. At this site, we compiled tree‐ring records, leaf‐level gas exchange, eddy flux measurements, dendrometer band data, and satellite remote sensing estimates of greenness and leaf area before, during, and after the 2012 drought. After accounting for the relative abundance of tree species in the stand, we estimate that legacy effects led to ~10% reductions in tree‐ring width increments in the year following the severe drought. Despite this stand‐scale reduction in radial growth, we found that leaf‐level photosynthesis, gross primary productivity (GPP), and vegetation greenness were not suppressed in the year following the 2012 drought. Neither temporal asynchrony between radial growth and carbon uptake nor sampling biases could explain our observations of legacy effects in tree rings but not in GPP. Instead, elevated leaf‐level photosynthesis co‐occurred with reduced leaf area in early 2013, indicating that resources may have been allocated away from radial growth in conjunction with postdrought upregulation of photosynthesis and repair of canopy damage. Collectively, our results indicate that tree‐ring legacy effects were not observed in other canopy processes, and that postdrought canopy allocation could be an important mechanism that decouples tree‐ring signals from GPP.

     
    more » « less
  2. Abstract

    Despite much interest in relationships among carbon and water in forests, few studies assess how carbon accumulation scales with water use in forested watersheds with varied histories. This study quantified tree growth, water use efficiency, and carbon‐water tradeoffs of young versus mature/old‐growth forest in three small (13–22 ha) watersheds in the H.J. Andrews Experimental Forest, Oregon, USA. To quantify and scale carbon‐water tradeoffs from trees to watersheds, tree‐ring records and greenness and wetness indices from remote sensing were combined with long‐term vegetation, climate, and streamflow data from young forest watersheds (trees ∼45 years of age) and from a mature/old‐growth forest watershed (trees 150–500 years of age). Biomass production was closely related to water use; water use efficiency (basal area increment per unit of evapotranspiration) was lower; and carbon‐water tradeoffs were steeper in young forest plantations compared with old‐growth forest for which the tree growth record begins in the 1850s. Greenness and wetness indices from Landsat imagery were not significant predictors of streamflow or tree growth over the period 1984 to 2017, and soil C and N did not differ significantly among watersheds. Multiple lines of evidence show that mature and old‐growth forest watersheds store and accumulate more carbon, are more drought resistant, and better sustain water availability compared to young forests. These results provide a basis for reconstructions and predictions that are potentially broadly applicable, because first‐order watersheds occupy 80%–90% of large river basins and study watersheds are representative of forest history in the Pacific Northwest region.

     
    more » « less
  3. The negative growth response of North American boreal forest trees to warm summers is well documented and the constraint of competition on tree growth widely reported, but the potential interaction between climate and competition in the boreal forest is not well studied. Because competition may amplify or mute tree climate‐growth responses, understanding the role current forest structure plays in tree growth responses to climate is critical in assessing and managing future forest productivity in a warming climate. Using white spruce tree ring and carbon isotope data from a long‐term vegetation monitoring program in Denali National Park and Preserve, we investigated the hypotheses that (a) competition and site moisture characteristics mediate white spruce radial growth response to climate and (b) moisture limitation is the mechanism for reduced growth. We further examined the impact of large reproductive events (mast years) on white spruce radial growth and stomatal regulation. We found that competition and site moisture characteristics mediated white spruce climate‐growth response. The negative radial growth response to warm and dry early‐ to mid‐summer and dry late summer conditions intensified in high competition stands and in areas receiving high potential solar radiation. Discrimination against 13C was reduced in warm, dry summers and further diminished on south‐facing hillslopes and in high competition stands, but was unaffected by climate in open floodplain stands, supporting the hypothesis that competition for moisture limits growth. Finally, during mast years, we found a shift in current year's carbon resources from radial growth to reproduction, reduced 13C discrimination, and increased intrinsic water‐use efficiency. Our findings highlight the importance of temporally variable and confounded factors, such as forest structure and climate, on the observed climate‐growth response of white spruce. Thus, white spruce growth trends and productivity in a warming climate will likely depend on landscape position and current forest structure. 
    more » « less
  4. Abstract

    How forests respond to accelerated climate change will affect the terrestrial carbon cycle. To better understand these responses, more examples are needed to assess how tree growth rates react to abrupt changes in growing‐season temperatures. Here we use a natural experiment in which a glacier's fluctuations exposed a temperate rainforest to changes in summer temperatures of similar magnitude to those predicted to occur by 2050. We hypothesized that the onset of glacier‐accentuated temperature trends would act to increase the variance in stand‐level tree growth rates, a proxy for forest net primary productivity. Instead, dendrochronological records reveal that the growth rates of five, co‐occurring conifer species became less synchronous, and this diversification of species responses acted to reduce the variance and to increase the stability of community‐wide growth rates. These results warrant further inquiry into how climate‐induced changes in tree‐growth diversity may help stabilize future ecosystem services like forest carbon storage.

     
    more » « less
  5. Abstract

    Robust ecological forecasting of tree growth under future climate conditions is critical to anticipate future forest carbon storage and flux. Here, we apply three ingredients of ecological forecasting that are key to improving forecast skill: data fusion, confronting model predictions with new data, and partitioning forecast uncertainty. Specifically, we present the first fusion of tree‐ring and forest inventory data within a Bayesian state‐space model at a multi‐site, regional scale, focusing onPinus ponderosavar.brachypterain the southwestern US. Leveraging the complementarity of these two data sources, we parsed the ecological complexity of tree growth into the effects of climate, tree size, stand density, site quality, and their interactions, and quantified uncertainties associated with these effects. New measurements of trees, an ongoing process in forest inventories, were used to confront forecasts of tree diameter with observations, and evaluate alternative tree growth models. We forecasted tree diameter and increment in response to an ensemble of climate change projections, and separated forecast uncertainty into four different causes: initial conditions, parameters, climate drivers, and process error. We found a strong negative effect of fall–spring maximum temperature, and a positive effect of water‐year precipitation on tree growth. Furthermore, tree vulnerability to climate stress increases with greater competition, with tree size, and at poor sites. Under future climate scenarios, we forecast increment declines of 22%–117%, while the combined effect of climate and size‐related trends results in a 56%–91% decline. Partitioning of forecast uncertainty showed that diameter forecast uncertainty is primarily caused by parameter and initial conditions uncertainty, but increment forecast uncertainty is mostly caused by process error and climate driver uncertainty. This fusion of tree‐ring and forest inventory data lays the foundation for robust ecological forecasting of aboveground biomass and carbon accounting at tree, plot, and regional scales, including iterative improvement of model skill.

     
    more » « less