Successional, second-growth forests dominate much of eastern North America; thus, patterns of biomass accumulation in standing trees and downed wood are of great interest for forest management and carbon accounting. The timing and magnitude of biomass accumulation in later stages of forest development are not fully understood. We applied a “chronosequence with resampling” approach to characterize live and dead biomass accumulation in 16 northern hardwood stands in the White Mountains of New Hampshire. Live aboveground biomass increased rapidly and leveled off at about 350 Mg/ha by 145 years. Downed wood biomass fluctuated between 10 and 35 Mg/ha depending on disturbances. The species composition of downed wood varied predictably with overstory succession, and total mass of downed wood increased with stand age and the concomitant production of larger material. Fine woody debris peaked at 30–50 years during the self-thinning of early successional species, notably pin cherry. Our data support a model of northern hardwood forest development wherein live tree biomass accumulates asymptotically and begins to level off at ∼140–150 years. Still, 145-year-old second-growth stands differed from old-growth forests in their live ( p = 0.09) and downed tree diameter distributions ( p = 0.06). These patterns of forest biomass accumulation would be difficult to detect without a time series of repeated measurements of stands of different ages. 
                        more » 
                        « less   
                    
                            
                            Carbon‐Water Tradeoffs in Old‐Growth and Young Forests of the Pacific Northwest
                        
                    
    
            Abstract Despite much interest in relationships among carbon and water in forests, few studies assess how carbon accumulation scales with water use in forested watersheds with varied histories. This study quantified tree growth, water use efficiency, and carbon‐water tradeoffs of young versus mature/old‐growth forest in three small (13–22 ha) watersheds in the H.J. Andrews Experimental Forest, Oregon, USA. To quantify and scale carbon‐water tradeoffs from trees to watersheds, tree‐ring records and greenness and wetness indices from remote sensing were combined with long‐term vegetation, climate, and streamflow data from young forest watersheds (trees ∼45 years of age) and from a mature/old‐growth forest watershed (trees 150–500 years of age). Biomass production was closely related to water use; water use efficiency (basal area increment per unit of evapotranspiration) was lower; and carbon‐water tradeoffs were steeper in young forest plantations compared with old‐growth forest for which the tree growth record begins in the 1850s. Greenness and wetness indices from Landsat imagery were not significant predictors of streamflow or tree growth over the period 1984 to 2017, and soil C and N did not differ significantly among watersheds. Multiple lines of evidence show that mature and old‐growth forest watersheds store and accumulate more carbon, are more drought resistant, and better sustain water availability compared to young forests. These results provide a basis for reconstructions and predictions that are potentially broadly applicable, because first‐order watersheds occupy 80%–90% of large river basins and study watersheds are representative of forest history in the Pacific Northwest region. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10554081
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- AGU Advances
- Volume:
- 5
- Issue:
- 4
- ISSN:
- 2576-604X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Evaporation of precipitation from plant surfaces, or interception, is a major component of the global water budget. Interception has been measured and/or modelled across a wide variety of forest types; however, most studies have focused on mature, second‐growth forests, and few studies have examined interception processes across forest age classes. We present data on two components of interception, total canopy interception (Ei) and litter interception—that is, Oi + Oehorizon layers—(Eff), across a forest age chronosequence, from 2 years since harvest to old growth. We used precipitation, throughfall, and stemflow collectors to measure total rainfall (P) and estimateEi; and collected litter biomass and modelled litter wetting and drying to estimate evaporative loss from litter. CanopyEi,Pminus throughfall, increased rapidly with forest age and then levelled off to a maximum of 21% ofPin an old‐growth site. Stemflow also varied across stands, with the highest stemflow (~8% ofP) observed in a 12‐year‐old stand with high stem density. ModelledEffwas 4–6% ofPand did not vary across sites. Total stand‐level interception losses (Ei + Eff) were best predicted by stand age (R2 = 0.77) rather than structural parameters such as basal area (R2 = 0.49) or leaf area (R2 < 0.01). Forest age appears to be an important driver of interception losses from forested mountain watersheds even when stand‐level structural variables are similar. These results will contribute to our understanding of water budgets across the broader matrix of forest ages that characterize the modern forest landscape.more » « less
- 
            Delays in peak physiological activity may reduce resource acquisition as trees recover from wildfireAbstract Few studies have investigated how mature trees recover physiologically from wildfire damage, and none have comprehensively linked tree hydraulics with belowground function. Uncovering mechanistic links between rates of above‐ and belowground recovery is necessary for improving predictions of forest resilience and carbon dynamics following wildfire. We coupled continuous measurements of tree water flow and soil CO2efflux with detailed physiological measurements of above‐ and belowground function following a mixed‐severity wildfire. We found that maturePinus ponderosatrees with up to 85% canopy and stem damage resumed physiological functioning by the second growing season post‐fire. However, these trees also exhibited delayed peak water uptake (relative to less‐burned trees) that coincided with summer heat and drought. Our results suggest fire damage may prevent the critical timing in which peak physiological function overlaps with optimal growing conditions (e.g., moisture and nutrient availability). As a result, we suggest the degree of root and microbial damage should be assessed along with observed aboveground damage to more effectively predict tree recovery potential. While significantly damaged trees resumed typical hydraulic function within two years, observed delays in peak water uptake could require higher water and nutrient use efficiency to maintain carbon sequestration rates.more » « less
- 
            Abstract Long‐term watershed experiments provide the opportunity to understand forest hydrology responses to past logging, road construction, forest regrowth, and their interactions with climate and geomorphic processes such as road‐related landslides. We examined a 50‐year record from paired‐watershed experiments in the H. J. Andrews Experimental Forest, Oregon, USA in which 125 to 450‐year‐old conifer forests were harvested in the 1960s and 1970s and converted to planted conifer forests. We evaluated how quickflow and delayed flow for 1222 events in treated and reference watersheds changed by season after clearcutting and road construction, including 50 years of growth of planted forest, major floods, and multi‐decade reductions in snowpack. Quickflow runoff early in the water year (fall) increased by up to +99% in the first decade, declining to below pre‐harvest levels (−1% to −15%) by the third to fifth decade after clearcutting. Fall delayed flow responded more dramatically than quickflow and fell below pre‐treatment levels in all watersheds by the fifth decade, consistent with increased transpiration in the planted forests. Quickflow increased less (+12% to 70%) during the winter and spring but remained higher than pre‐treatment levels throughout the fourth or fifth decade, potentially impacted by post‐harvest burning, roads, and landslides. Quickflow remained high throughout the 50‐year period of study, and much higher than delayed flow in the last two decades in a watershed in which road‐related changes in flow routing and debris flows after the flood of record increased network connectivity. A long‐term decline in regional snowpack was not clearly associated with responses of treated vs. reference watersheds. Hydrologic processes altered by harvest of old‐growth conifer forest more than 50 years ago (transpiration, interception, snowmelt, and flow routing) continued to modify streamflow, with no clear evidence of hydrologic recovery. These findings underscore the importance of continued long‐term watershed experiments.more » « less
- 
            Conceptual models of nutrient retention in ecosystems suggest that mature forests receiving chronically elevated atmospheric nitrogen (N) deposition should experience increased nitrate (NO3-) losses to streams. However, at the Hubbard Brook Experimental Forest (New Hampshire, USA), recent stream NO3- concentrations have been unexpectedly low in mature watersheds. Poorly understood retention of NO3 matter (SOM) may explain this discrepancy. The relative availability of C and N in SOM influences NO3--N retention and may vary during succession due to processes of N mining and reaccumulation. To evaluate the strength of the SOM sink for NO3--N, we applied a 15NO3- tracer to the mineral soil in eight stands spanning a forest chronosequence from about 20 years to old growth ( 200 years). We tracked 15N recovery in SOM fractions in the upper 10 cm of B horizon over 5 weeks. Overall, forest age did not directly control the 5-week recovery of 15N, but it had an indirect effect via its influence on SOM properties such as C/N. Old-growth forest soils had the lowest C/N, implying closer proximity to effective N saturation. Across sites, both the particulate- and mineral-associated SOM fractions rapidly incorporated 15N, but recovery in each fraction generally declined with time, reflecting the dynamic nature of SOM. These results indicate that mineral horizons can provide an important N sink through the short term in forests of all ages, but that SOM-N remains subject to active cycling and potential loss from the soil pool over the longer term.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    