Responding to the need to teach remotely due to COVID-19, we used readily available computational approaches (and developed associated tutorials (https://mdh-cures-community.squarespace.com/virtual-cures-and-ures)) to teach virtual Course-Based Undergraduate Research Experience (CURE) laboratories that fulfil generally accepted main components of CUREs or Undergraduate Research Experiences (UREs): Scientific Background, Hypothesis Development, Proposal, Experiments, Teamwork, Data Analysis, Conclusions, and Presentation1. We then developed and taught remotely, in three phases, protein-centric CURE activities that are adaptable to virtually any protein, emphasizing contributions of noncovalent interactions to structure, binding and catalysis (an ASBMB learning framework2 foundational concept). The courses had five learning goals (unchanged in the virtualmore »
This content will become publicly available on July 15, 2022
Virtual Reality Laboratory Experiences for Electricity and Magnetism Courses
A solid understanding of electromagnetic (E&M) theory is key to the education of electrical engineering students. However, these concepts are notoriously challenging for students to learn, due to the difficulty in grasping abstract concepts such as the electric force as an invisible force that is acting at a distance, or how electromagnetic radiation is permeating and propagating in space. Building physical intuition to manipulate these abstractions requires means to visualize them in a three-dimensional space. This project involves the development of 3D visualizations of abstract E&M concepts in Virtual Reality (VR), in an immersive, exploratory, and engaging environment.
VR provides the means of exploration, to construct visuals and manipulable objects to represent knowledge. This leads to a constructivist way of learning, in the sense that students are allowed to build their own knowledge from meaningful experiences. In addition, the VR labs replace the cost of hands-on labs, by recreating the experiments and experiences on Virtual Reality platforms.
The development of the VR labs for E&M courses involves four distinct phases: (I) Lab Design, (II) Experience Design, (III) Software Development, and (IV) User Testing. During phase I, the learning goals and possible outcomes are clearly defined, to provide context for the VR laboratory more »
- Award ID(s):
- 1945573
- Publication Date:
- NSF-PAR ID:
- 10318170
- Journal Name:
- 2021 ASEE Virtual Annual Conference Content Access
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Virtual reality offers vast possibilities to enhance the conventional approach for delivering engineering education. The introduction of virtual reality technology into teaching can improve the undergraduate mechanical engineering curriculum by supplementing the traditional learning experience with outside-the-classroom materials. The Center for Aviation and Automotive Technological Education using Virtual E-Schools (CA2VES), in collaboration with the Clemson University Center for Workforce Development (CUCWD), has developed a comprehensive virtual reality-based learning system. The available e-learning materials include eBooks, mini-video lectures, three-dimensional virtual reality technologies, and online assessments. Select VR-based materials were introduced to students in a sophomore level mechanical engineering laboratory course viamore »
-
This paper explains the design of a prototype desktop and augmented Virtual Reality (VR) framework as a medium to deliver instructional materials to the students in an introductory computer animation course. This framework was developed as part of a Teaching Innovation Grant to propose a cost-effective and innovative instructional frameworks to engage and stimulate students. Desktop-based virtual reality presents a 3-dimensional (3D) world using the display of a standard desktop computer available in most of the PC labs on campus. This is a required course at this university that has students not only from the primary department, but from othermore »
-
Many university engineering programs require their students to complete a senior capstone experience to equip them with the knowledge and skills they need to succeed after graduation. Such capstone experiences typically integrate knowledge and skills learned cumulatively in the degree program, often engaging students in projects outside of the classroom. As part of an initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Funded by a grant from the National Science Foundation’s Revolutionizing Engineering Departments (RED) program, this departmental transformation (referred to asmore »
-
This work introduces a new approach called Connected Learning and Integrated Course Knowledge (CLICK). CLICK is intended to provide an integrative learning experience by leveraging Virtual Reality (VR) technology to help provide a theme to connect and transfer the knowledge of engendering concepts. Integrative learning is described as the process of creating connections between concepts (i.e., skill and knowledge) from different resources and experiences, linking theory and practice, and using a variation of platforms to help students’ understanding. In the CLICK approach, the integration is achieved by VR learning modules that serve as a platform for a common theme andmore »