skip to main content


Search for: All records

Award ID contains: 1945573

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Cold H+produced via charge exchange reactions between ring current ions and exospheric neutral hydrogen constitutes an additional source of cold plasma that further contributes to the plasmasphere and affects the plasma dynamics in the Earth's magnetosphere system; however, its production and associated effects on the plasmasphere dynamics have not been fully assessed and quantified. In this study, we perform numerical simulations mimicking an idealized three‐phase geomagnetic storm to investigate the role of heavy ion composition in the ring current (O+vs. N+) and exospheric neutral hydrogen density in the production of cold H+via charge exchange reactions. It is found that ring current heavy ions produce more than 50% of the total cold H+via charge exchange reactions, and energetic N+is more efficient in producing cold H+via charge exchange reactions than O+. Furthermore, the density structure of the cold H+is highly dependent on the mass of the parent ion; that is, cold H+deriving from charge exchange reactions involving energetic O+with neutral hydrogen, populates the lower L‐shells, while cold H+deriving from charge exchange reactions involving energetic N+with neutral hydrogen populates the higher L‐shells. In addition, the density of cold H+produced via charge exchange reactions involving N+can be peak at values up to one order of magnitude larger than the local plasmaspheric density, suggesting that solely considering the supply of cold plasma from the ionosphere to the plasmasphere can lead to a significant underestimation of plasmasphere density.

     
    more » « less
  2. Abstract

    Charged particles are observed to be injected into the inner magnetosphere from the plasma sheet and energized up to high energies over short distance and time, during both geomagnetic storms and substorms. Numerous studies suggest that it is the short‐duration and high‐speed plasma flows, which are closely associated with the global effects of magnetic reconnection and inductive effects, rather than the slow and steady convection that control the earthward transport of plasma and magnetic flux from the magnetotail, especially during geomagnetic activities. In order to include the effect of the inductive electric field produced by the temporal change of magnetic field on the dynamics of ring current, we implemented both theoretical and numerical modifications to an inner magnetosphere kinetic model—Hot Electron‐Ion Drift Integrator. New drift terms associated with the inductive electric field are incorporated into the calculation of bounce‐averaged coefficients for the distribution function, and their numerical implementations and the associated effects on total drift and energization rate are discussed. Numerical simulations show that the local particle drifts are significantly altered by the presence of inductive electric fields, in addition to the changing magnetic gradient‐curvature drift due to the distortion of magnetic field, and at certain locations, the inductive drift dominates both the potential and the magnetic gradient‐curvature drift. The presence of a self‐consistent inductive electric field alters the overall particle trajectories, energization, and pitch angle, resulting in significant changes in the topology and the strength of the ring current.

     
    more » « less
  3. A solid understanding of electromagnetic (E&M) theory is key to the education of electrical engineering students. However, these concepts are notoriously challenging for students to learn, due to the difficulty in grasping abstract concepts such as the electric force as an invisible force that is acting at a distance, or how electromagnetic radiation is permeating and propagating in space. Building physical intuition to manipulate these abstractions requires means to visualize them in a three-dimensional space. This project involves the development of 3D visualizations of abstract E&M concepts in Virtual Reality (VR), in an immersive, exploratory, and engaging environment. VR provides the means of exploration, to construct visuals and manipulable objects to represent knowledge. This leads to a constructivist way of learning, in the sense that students are allowed to build their own knowledge from meaningful experiences. In addition, the VR labs replace the cost of hands-on labs, by recreating the experiments and experiences on Virtual Reality platforms. The development of the VR labs for E&M courses involves four distinct phases: (I) Lab Design, (II) Experience Design, (III) Software Development, and (IV) User Testing. During phase I, the learning goals and possible outcomes are clearly defined, to provide context for the VR laboratory experience, and to identify possible technical constraints pertaining to the specific laboratory exercise. During stage II, the environment (the world) the player (user) will experience is designed, along with the foundational elements, such as ways of navigation, key actions, and immersion elements. During stage III, the software is generated as part of the course projects for the Virtual Reality course taught in the Computer Science Department at the same university, or as part of independent research projects involving engineering students. This reflects the strong educational impact of this project, as it allows students to contribute to the educational experiences of their peers. During phase IV, the VR experiences are played by different types of audiences that fit the player type. The team collects feedback and if needed, implements changes. The pilot VR Lab, introduced as an additional instructional tool for the E&M course during the Fall 2019, engaged over 100 students in the program, where in addition to the regular lectures, students attended one hour per week in the E&M VR lab. Student competencies around conceptual understanding of electromagnetism topics are measured via formative and summative assessments. To evaluate the effectiveness of VR learning, each lab is followed by a 10-minute multiple-choice test, designed to measure conceptual understanding of the various topics, rather than the ability to simply manipulate equations. This paper discusses the implementation and the pedagogy of the Virtual Reality laboratory experiences to visualize concepts in E&M, with examples for specific labs, as well as challenges, and student feedback with the new approach. We will also discuss the integration of the 3D visualizations into lab exercises, and the design of the student assessment tools used to assess the knowledge gain when the VR technology is employed. 
    more » « less
  4. Romain Maggiolo, Nicolas André (Ed.)
    This paper reviews a few important concepts and findings pertaining to the ring current research. Also briefly overviewed are the sources and losses of ring current ions. Recent challenges in modeling and observations of the ring current are presented, as is a brief discussion on open questions. 
    more » « less