In the absence of data from a randomized trial, researchers may aim to use observational data to draw causal inference about the effect of a treatment on a time-to-event outcome. In this context, interest often focuses on the treatment-specific survival curves, that is, the survival curves were the population under study to be assigned to receive the treatment or not. Under certain conditions, including that all confounders of the treatment-outcome relationship are observed, the treatment-specific survival curve can be identified with a covariate-adjusted survival curve. In this article, we propose a novel cross-fitted doubly-robust estimator that incorporates data-adaptive (e.g. machine learning) estimators of the conditional survival functions. We establish conditions on the nuisance estimators under which our estimator is consistent and asymptotically linear, both pointwise and uniformly in time. We also propose a novel ensemble learner for combining multiple candidate estimators of the conditional survival estimators. Notably, our methods and results accommodate events occurring in discrete or continuous time, or an arbitrary mix of the two. We investigate the practical performance of our methods using numerical studies and an application to the effect of a surgical treatment to prevent metastases of parotid carcinoma on mortality.
more »
« less
Double Machine Learning Density Estimation for Local Treatment Effects with Instruments
It is common to quantify causal effects with mean values, which, however, may fail to capture significant distribution differences of the outcome under different treatments. We study the problem of estimating the density of the causal effect of a binary treatment on a continuous outcome given a binary instrumental variable in the presence of covariates. Specifically, we consider the local treatment effect, which measures the effect of treatment among those who comply with the assignment under the assumption of monotonicity (only the ones who were offered the treatment take it). We develop two families of methods for this task, kernel-smoothing and model-based approximations -- the former smoothes the density by convoluting with a smooth kernel function; the latter projects the density onto a finite-dimensional density class. For both approaches, we derive double/debiased machine learning (DML) based estimators. We study the asymptotic convergence rates of the estimators and show that they are robust to the biases in nuisance function estimation. We illustrate the proposed methods on synthetic data and a real dataset called 401(k).
more »
« less
- Award ID(s):
- 2040971
- PAR ID:
- 10318188
- Date Published:
- Journal Name:
- Advances in neural information processing systems
- ISSN:
- 1049-5258
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Post-treatment variables often complicate causal inference. They appear in many scientific problems, including non-compliance, truncation by death, mediation, and surrogate endpoint evaluation. Principal stratification is a strategy to address these challenges by adjusting for the potential values of the post-treatment variables, defined as the principal strata. It allows for characterizing treatment effect heterogeneity across principal strata and unveiling the mechanism of the treatment’s impact on the outcome related to post-treatment variables. However, the existing literature has primarily focused on binary post-treatment variables, leaving the case with continuous post-treatment variables largely unexplored. This gap persists due to the complexity of infinitely many principal strata, which present challenges to both the identification and estimation of causal effects. We fill this gap by providing nonparametric identification and semiparametric estimation theory for principal stratification with continuous post-treatment variables. We propose to use working models to approximate the underlying causal effect surfaces and derive the efficient influence functions of the corresponding model parameters. Based on the theory, we construct doubly robust estimators and implement them in the R package continuousPCE.more » « less
-
Identification theory for causal effects in causal models associated with hidden variable directed acyclic graphs (DAGs) is well studied. However, the corresponding algorithms are underused due to the complexity of estimating the identifying functionals they output. In this work, we bridge the gap between identification and estimation of population-level causal effects involving a single treatment and a single outcome. We derive influence function based estimators that exhibit double robustness for the identified effects in a large class of hidden variable DAGs where the treatment satisfies a simple graphical criterion; this class includes models yielding the adjustment and front-door functionals as special cases. We also provide necessary and sufficient conditions under which the statistical model of a hidden variable DAG is nonparametrically saturated and implies no equality constraints on the observed data distribution. Further, we derive an important class of hidden variable DAGs that imply observed data distributions observationally equivalent (up to equality constraints) to fully observed DAGs. In these classes of DAGs, we derive estimators that achieve the semiparametric efficiency bounds for the target of interest where the treatment satisfies our graphical criterion. Finally, we provide a sound and complete identification algorithm that directly yields a weight based estimation strategy for any identifiable effect in hidden variable causal models.more » « less
-
Summary The problem of estimating the average treatment effects is important when evaluating the effectiveness of medical treatments or social intervention policies. Most of the existing methods for estimating the average treatment effect rely on some parametric assumptions about the propensity score model or the outcome regression model one way or the other. In reality, both models are prone to misspecification, which can have undue influence on the estimated average treatment effect. We propose an alternative robust approach to estimating the average treatment effect based on observational data in the challenging situation when neither a plausible parametric outcome model nor a reliable parametric propensity score model is available. Our estimator can be considered as a robust extension of the popular class of propensity score weighted estimators. This approach has the advantage of being robust, flexible, data adaptive, and it can handle many covariates simultaneously. Adopting a dimension reduction approach, we estimate the propensity score weights semiparametrically by using a non-parametric link function to relate the treatment assignment indicator to a low-dimensional structure of the covariates which are formed typically by several linear combinations of the covariates. We develop a class of consistent estimators for the average treatment effect and study their theoretical properties. We demonstrate the robust performance of the estimators on simulated data and a real data example of investigating the effect of maternal smoking on babies’ birth weight.more » « less
-
Coarse Structural Nested Mean Models (SNMMs, Robins (2000)) and G-estimation can be used to estimate the causal effect of a time-varying treatment from longitudinal observational studies. However, they rely on an untestable assumption of no unmeasured confounding. In the presence of unmeasured confounders, the unobserved potential outcomes are not missing at random, and standard G-estimation leads to biased effect estimates. To remedy this, we investigate the sensitivity of G-estimators of coarse SNMMs to unmeasured confounding, assuming a nonidentifiable bias function which quantifies the impact of unmeasured confounding on the average potential outcome. We present adjusted G-estimators of coarse SNMM parameters and prove their consistency, under the bias modeling for unmeasured confounding. We apply this to a sensitivity analysis for the effect of the ART initiation time on the mean CD4 count at year 2 after infection in HIV-positive patients, based on the prospective Acute and Early Disease Research Program.more » « less
An official website of the United States government

