skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Double Machine Learning Density Estimation for Local Treatment Effects with Instruments
It is common to quantify causal effects with mean values, which, however, may fail to capture significant distribution differences of the outcome under different treatments. We study the problem of estimating the density of the causal effect of a binary treatment on a continuous outcome given a binary instrumental variable in the presence of covariates. Specifically, we consider the local treatment effect, which measures the effect of treatment among those who comply with the assignment under the assumption of monotonicity (only the ones who were offered the treatment take it). We develop two families of methods for this task, kernel-smoothing and model-based approximations -- the former smoothes the density by convoluting with a smooth kernel function; the latter projects the density onto a finite-dimensional density class. For both approaches, we derive double/debiased machine learning (DML) based estimators. We study the asymptotic convergence rates of the estimators and show that they are robust to the biases in nuisance function estimation. We illustrate the proposed methods on synthetic data and a real dataset called 401(k).  more » « less
Award ID(s):
2040971
PAR ID:
10318188
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the absence of data from a randomized trial, researchers may aim to use observational data to draw causal inference about the effect of a treatment on a time-to-event outcome. In this context, interest often focuses on the treatment-specific survival curves, that is, the survival curves were the population under study to be assigned to receive the treatment or not. Under certain conditions, including that all confounders of the treatment-outcome relationship are observed, the treatment-specific survival curve can be identified with a covariate-adjusted survival curve. In this article, we propose a novel cross-fitted doubly-robust estimator that incorporates data-adaptive (e.g. machine learning) estimators of the conditional survival functions. We establish conditions on the nuisance estimators under which our estimator is consistent and asymptotically linear, both pointwise and uniformly in time. We also propose a novel ensemble learner for combining multiple candidate estimators of the conditional survival estimators. Notably, our methods and results accommodate events occurring in discrete or continuous time, or an arbitrary mix of the two. We investigate the practical performance of our methods using numerical studies and an application to the effect of a surgical treatment to prevent metastases of parotid carcinoma on mortality. 
    more » « less
  2. Identification theory for causal effects in causal models associated with hidden variable directed acyclic graphs (DAGs) is well studied. However, the corresponding algorithms are underused due to the complexity of estimating the identifying functionals they output. In this work, we bridge the gap between identification and estimation of population-level causal effects involving a single treatment and a single outcome. We derive influence function based estimators that exhibit double robustness for the identified effects in a large class of hidden variable DAGs where the treatment satisfies a simple graphical criterion; this class includes models yielding the adjustment and front-door functionals as special cases. We also provide necessary and sufficient conditions under which the statistical model of a hidden variable DAG is nonparametrically saturated and implies no equality constraints on the observed data distribution. Further, we derive an important class of hidden variable DAGs that imply observed data distributions observationally equivalent (up to equality constraints) to fully observed DAGs. In these classes of DAGs, we derive estimators that achieve the semiparametric efficiency bounds for the target of interest where the treatment satisfies our graphical criterion. Finally, we provide a sound and complete identification algorithm that directly yields a weight based estimation strategy for any identifiable effect in hidden variable causal models. 
    more » « less
  3. Summary The problem of estimating the average treatment effects is important when evaluating the effectiveness of medical treatments or social intervention policies. Most of the existing methods for estimating the average treatment effect rely on some parametric assumptions about the propensity score model or the outcome regression model one way or the other. In reality, both models are prone to misspecification, which can have undue influence on the estimated average treatment effect. We propose an alternative robust approach to estimating the average treatment effect based on observational data in the challenging situation when neither a plausible parametric outcome model nor a reliable parametric propensity score model is available. Our estimator can be considered as a robust extension of the popular class of propensity score weighted estimators. This approach has the advantage of being robust, flexible, data adaptive, and it can handle many covariates simultaneously. Adopting a dimension reduction approach, we estimate the propensity score weights semiparametrically by using a non-parametric link function to relate the treatment assignment indicator to a low-dimensional structure of the covariates which are formed typically by several linear combinations of the covariates. We develop a class of consistent estimators for the average treatment effect and study their theoretical properties. We demonstrate the robust performance of the estimators on simulated data and a real data example of investigating the effect of maternal smoking on babies’ birth weight. 
    more » « less
  4. Coarse Structural Nested Mean Models (SNMMs, Robins (2000)) and G-estimation can be used to estimate the causal effect of a time-varying treatment from longitudinal observational studies. However, they rely on an untestable assumption of no unmeasured confounding. In the presence of unmeasured confounders, the unobserved potential outcomes are not missing at random, and standard G-estimation leads to biased effect estimates. To remedy this, we investigate the sensitivity of G-estimators of coarse SNMMs to unmeasured confounding, assuming a nonidentifiable bias function which quantifies the impact of unmeasured confounding on the average potential outcome. We present adjusted G-estimators of coarse SNMM parameters and prove their consistency, under the bias modeling for unmeasured confounding. We apply this to a sensitivity analysis for the effect of the ART initiation time on the mean CD4 count at year 2 after infection in HIV-positive patients, based on the prospective Acute and Early Disease Research Program. 
    more » « less
  5. In this article, we study nonparametric inference for a covariate-adjusted regression function. This parameter captures the average association between a continuous exposure and an outcome after adjusting for other covariates. Under certain causal conditions, it also corresponds to the average outcome had all units been assigned to a specific exposure level, known as the causal dose–response curve. We propose a debiased local linear estimator of the covariate-adjusted regression function and demonstrate that our estimator converges pointwise to a mean-zero normal limit distribution. We use this result to construct asymptotically valid confidence intervals for function values and differences thereof. In addition, we use approximation results for the distribution of the supremum of an empirical process to construct asymptotically valid uniform confidence bands. Our methods do not require undersmoothing, permit the use of data-adaptive estimators of nuisance functions, and our estimator attains the optimal rate of convergence for a twice differentiable regression function. We illustrate the practical performance of our estimator using numerical studies and an analysis of the effect of air pollution exposure on cardiovascular mortality. 
    more » « less