Sustainable aquaculture includes the aquaculture of non-fed crops that provide ecosystem services including nutrient extraction and water quality improvement. While shellfish are the most farmed sustainable aquaculture crops in the USA, shellfish farmers in the northeastern US have an interest in diversifying their crops and incorporating seaweeds into their farms. In this study, we worked with oyster farmers to investigate the potential for farming sugar kelp, Saccharina latissima , across different environmental regimes in coastal Rhode Island USA. Kelp seed spools were outplanted at two time points in the fall/winter of 2017 and 2018 at four sites and cultivated until harvest the following spring. Kelp performance (length, width, yield), tissue content, and nutrient extraction were determined for each line in each year; oyster growth was also measured monthly for one year at each site. We found that kelp could successfully grow in both shallow coastal lagoons and estuarine sites, although the timing of planting and placement of sites was important. Lines that were planted earlier (as soon as water temperatures<15°C) grew longer and yielded more biomass at harvest; overall, kelp blade yield ranged from 0.36 ± 0.01 to 11.26 ± 2.18 kg/m long line. We report little variation in the tissue quality (C:N) of kelp among sites, but differences in biomass production led to differences in nutrient extraction, which ranged from 0.28 ± 0.04 to 16.35 ± 4.26 g nitrogen/m long line and 8.93 ± 0.35 to 286.30 ± 74.66 g carbon/m long line. We found extensive variability in kelp growth within and between lines and between years, suggesting that crop consistency is a challenge for kelp farmers in the region. Our results suggest that, as there is a lower barrier in terms of permitting (versus starting a new aquaculture farm), it may be a worthwhile investment to add sugar kelp to existing oyster farms, provided they have suitable conditions. At current market rates of US$0.88-$3.30 per kg, farmers in southern New England have the potential to earn US$2,229 per 60 m longline. While seaweed aquaculture is growing, considerable barriers still exist that prevent wide-scale kelp aquaculture adoption by existing aquafarmers.
more »
« less
The nitrogen bioextraction potential of nearshore Saccharina latissima cultivation and harvest in the Western Gulf of Maine
Abstract In-water remediation strategies, implemented in conjunction with traditional watershed management, could help minimize the impact of excess nitrogen (N) on marine ecosystems. Seaweed farming and harvesting may have potential as in-water N remediation tools in the Western Gulf of Maine (WGoM), but more understanding of the associated spatial and temporal variability is needed. In this study, Saccharina latissima was grown and collected from four WGoM sites in 2016–2019 and analyzed for tissue N content and stable isotopes. The source of N taken by the kelp was not obvious from monthly nor interannual mean δ 15 N measured in the kelp tissue, and the interannual means were significantly different between sites in the same bay. Mean kelp biomass across all sites and years was 9.84 (± 2.53)–14.84 kg (wet weight) per meter of longline at time of harvest (late May–early June). Nitrogen content of the S. latissima tissue was 1.04–3.82% (± 0.22) (dry weight) throughout the growing season and generally decreased through the spring. Using these results, we estimated that harvesting a hypothetical hectare of S. latissima after 6–7 months of cultivation in the WGoM would have the potential to remove 19.2 (± 4.8)–176.0 (± 7.7) kg N ha −1 , depending on the density of longlines. The wide ranges of both biomass at time of harvest, and δ 15 N and percent N content in the kelp tissue, highlight the need for site-specific pilot studies, even within a specific bay, prior to implementing kelp aquaculture as an in-water tool for N bioextraction.
more »
« less
- Award ID(s):
- 1849227
- PAR ID:
- 10318297
- Date Published:
- Journal Name:
- Journal of Applied Phycology
- Volume:
- 33
- Issue:
- 3
- ISSN:
- 0921-8971
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hajime, Kayanne (Ed.)The nitrogen (N) isotopic composition of coral tissue provides insight into N sources and cycling on reefs, and coral skeleton-bound organic matter (CS-δ15N) can extend these insights into the past. Across the Bermuda platform, we measured the δ15N of four coral species and their potential N sources, as well as an asymbiotic filter feeder as a comparative heterotroph and benthic macroalgae as a comparative autotroph. Organisms and organic N pools from the coral reefs exhibit a δ15N increase toward the Bermuda coast, likely due to anthropogenic N inputs. At all sites, the δ15N of bulk coral tissue is consistent with corals feeding dominantly on zooplankton-sized organic matter and some smaller suspended particulate N. The corals lack the trophic δ15N elevation that characterizes serpulids; this is consistent with internal recycling and retention of low-δ15N metabolic N by symbiont-bearing corals. The data are inconsistent with corals’ reliance on the dissolved inorganic N used by macroalgae at the same sites. Among coral species, two species with smaller polyps (1-2 mm) have ~1‰ lower bulk tissue δ15N than two counterparts with larger polyps (5-10 mm), perhaps due to differences in food source. Taxon-specific δ15N differences are also observed between coral tissue and skeleton-bound N, with larger differences in the two small-polyp species. In net, however, CS-δ15N mean values and spatial gradients were similar in the four species studied.more » « less
-
Previous research in southeast Alaska on the effects of sea otters Enhydra lutris in seagrass Zostera marina communities identified many but not all of the trophic relationships that were predicted by a sea otter-mediated trophic cascade. To further resolve these trophic connections, we compared biomass, carbon (δ 13 C) and nitrogen (δ 15 N) stable isotope (SI), and fatty acid (FA) data from 16 taxa at 3 sites with high and 3 sites with low sea otter density (8.2 and 0.1 sea otters km -2 , respectively). We found lower crab and clam biomass in the high sea otter region but did not detect a difference in biomass of other seagrass community taxa or the overall community isotopic niche space between sea otter regions. Only staghorn sculpin differed in δ 13 C between regions, and Fucus , sugar kelp, butter clams, dock shrimp, and shiner perch differed in δ 15 N. FA analysis indicated multivariate dissimilarity in 11 of the 15 conspecifics between sea otter regions. FA analysis found essential FAs, which consumers must obtain from their diet, including 20:5ω3 (EPA) and 22:6ω3 (DHA), were common in discriminating conspecifics between sea otter regions, suggesting differences in consumer diets. Further FA analysis indicated that many consumers rely on diverse diets, regardless of sea otter region, potentially buffering these consumers from sea otter-mediated changes to diet availability. While sea otters are major consumers in this system, further studies are needed to understand the mechanisms responsible for the differences in biomarkers between regions with and without sea otters.more » « less
-
Thanos Dailianis (Ed.)Kelp forest declines have been linked to warming ocean temperatures worldwide. Ocean warming rarely occurs in isolation, so multiple stressor studies are necessary to understand the physiological responses of kelp to climate change. The canopy-forming bull kelp, Nereocystis luetkeana, is going locally extinct in areas of the Salish Sea that are seasonally warm and nutrient poor, while the understory kelp, Saccharina latissima, persists at those sites. Further, nitrogen availability can alter physiological responses of kelps to temperature stress, including alleviating warming stress. We compared the physiological responses of kelp sporophytes to high temperature stress and nitrogen limitation between two populations of N. luetkeana with different environmental histories (warm and nutrient poor vs. cold and nutrient rich) and between two species, N. luetkeana and S. latissima. Using laboratory mesocosms, we tested the interactive effects of short term (8-9 day) exposure of kelp blades to different temperatures: low (9, 13°C), moderate (15, 16°C), and warm (21°C) at two different nitrogen concentrations: low (1-3 μM) vs. high (>10 μM). We examined a wide array of physiological responses: blade growth, photosynthesis, respiration, photosynthetic yield, nutrient uptake, and tissue C:N. Both kelp species responded negatively to elevated temperatures, but not to low nitrogen levels. Blades of both species showed signs of metabolic stress and reduced growth in the warmest temperature treatment (21°C), at both high and low nitrogen levels, suggesting that N. luetkeana and S. latissima are susceptible to thermal stress over short time periods. Populations of N. luetkeana from warm, nutrient poor and cool, nutrient rich areas were equally susceptible to the effects of ocean warming. Our results suggest that nutrient additions may actually reduce kelp performance at supra-optimal temperatures, and a thorough understanding of kelp responses to coastal temperature and nutrient dynamics is needed to guide conservation and restoration actions.more » « less
-
Objectives:Fine roots significantly influence ecosystem-scale cycling of nutrients, carbon (C), and water, yet there is limited understanding of how fine root traits vary across and within tropical forests, some of Earth's most C-rich ecosystems. The biomass of fine roots can impact soil carbon storage, as root mortality is a primary source of new carbon to soils. A positive relationship has been observed between fine root biomass and soil carbon stocks in Panama (Cusack et al 2018). Beyond biomass, root characteristics like specific root length (SRL) could also influence soil carbon, as roots with higher SRL are less dense and thinner, potentially decomposing more easily or promoting soil aggregation. Understanding the effects of root morphology and tissue quality on soil carbon storage and with soil properties in general can improve predictions of landscape-scale carbon patterns. We aggregated new data of root biomass, morphology and nutrient content at 0-10 cm, 10-20 cm, 20-50 cm and 50-100 cm depth increments across four distinct lowland Panamanian forests and paired with already published datasets (Cusack et al 2018; Cusack and Turner 2020) of soil chemistry from the same sites and soil depths to explore relationship between soil carbon stocks and root characteristics.Datasets included:The datasets provided include .csv and .xlsx files for fine root characteristics and soil chemistry from four different forests across 0-10 cm, 10-20 cm, 20-50 cm, and 50-100 cm depth increments. Root characteristics include live fine root biomass, dead fine root biomass, coarse root biomass, specific root length, root diameter, root tissue density, specific root area, root %N, root %C, and root C/N ratio. Soil chemistry data includes total carbon (TC), dissolved organic carbon (DOC), bulk density, total phosphorus (TP), available phosphorus (AEM Pi), and various Mehlich-extractable elements such as aluminum, calcium, iron, potassium, manganese, phosphorus, and zinc. Nitrogen content measures include ammonium, nitrate, total dissolved nitrogen (TDN), dissolved inorganic nitrogen (DIN), and dissolved organic nitrogen (DON). The dataset also includes total exchangeable bases (TEB) and effective cation exchange capacity (ECEC) in both centimoles of charge per kilogram and micromoles of charge per gram. The soil chemistry data was obtained from Cusack et al (2018) and Cusack and Turner (2020) and paired with root characteristics data for the same depth increments and sites. Additionally, a .kml file is provided with coordinates for all 32 plots included in the study across four forests (n = 8 plots per site). Root data was averaged across these 8 plots per site and soil data was collected in one pit in each site. This dataset serves as baseline data before a throughfall exclusion experiment, Panama Rainforest Changes with Experimental Drying (PARCHED), was implemented. No special software is needed to open these files.more » « less
An official website of the United States government

