Abstract In-water remediation strategies, implemented in conjunction with traditional watershed management, could help minimize the impact of excess nitrogen (N) on marine ecosystems. Seaweed farming and harvesting may have potential as in-water N remediation tools in the Western Gulf of Maine (WGoM), but more understanding of the associated spatial and temporal variability is needed. In this study, Saccharina latissima was grown and collected from four WGoM sites in 2016–2019 and analyzed for tissue N content and stable isotopes. The source of N taken by the kelp was not obvious from monthly nor interannual mean δ 15 N measured in the kelp tissue, and the interannual means were significantly different between sites in the same bay. Mean kelp biomass across all sites and years was 9.84 (± 2.53)–14.84 kg (wet weight) per meter of longline at time of harvest (late May–early June). Nitrogen content of the S. latissima tissue was 1.04–3.82% (± 0.22) (dry weight) throughout the growing season and generally decreased through the spring. Using these results, we estimated that harvesting a hypothetical hectare of S. latissima after 6–7 months of cultivation in the WGoM would have the potential to remove 19.2 (± 4.8)–176.0 (± 7.7) kg N ha −1 , depending on the density of longlines. The wide ranges of both biomass at time of harvest, and δ 15 N and percent N content in the kelp tissue, highlight the need for site-specific pilot studies, even within a specific bay, prior to implementing kelp aquaculture as an in-water tool for N bioextraction. 
                        more » 
                        « less   
                    
                            
                            Integrated multi-trophic aquaculture with sugar kelp and oysters in a shallow coastal salt pond and open estuary site
                        
                    
    
            Sustainable aquaculture includes the aquaculture of non-fed crops that provide ecosystem services including nutrient extraction and water quality improvement. While shellfish are the most farmed sustainable aquaculture crops in the USA, shellfish farmers in the northeastern US have an interest in diversifying their crops and incorporating seaweeds into their farms. In this study, we worked with oyster farmers to investigate the potential for farming sugar kelp, Saccharina latissima , across different environmental regimes in coastal Rhode Island USA. Kelp seed spools were outplanted at two time points in the fall/winter of 2017 and 2018 at four sites and cultivated until harvest the following spring. Kelp performance (length, width, yield), tissue content, and nutrient extraction were determined for each line in each year; oyster growth was also measured monthly for one year at each site. We found that kelp could successfully grow in both shallow coastal lagoons and estuarine sites, although the timing of planting and placement of sites was important. Lines that were planted earlier (as soon as water temperatures<15°C) grew longer and yielded more biomass at harvest; overall, kelp blade yield ranged from 0.36 ± 0.01 to 11.26 ± 2.18 kg/m long line. We report little variation in the tissue quality (C:N) of kelp among sites, but differences in biomass production led to differences in nutrient extraction, which ranged from 0.28 ± 0.04 to 16.35 ± 4.26 g nitrogen/m long line and 8.93 ± 0.35 to 286.30 ± 74.66 g carbon/m long line. We found extensive variability in kelp growth within and between lines and between years, suggesting that crop consistency is a challenge for kelp farmers in the region. Our results suggest that, as there is a lower barrier in terms of permitting (versus starting a new aquaculture farm), it may be a worthwhile investment to add sugar kelp to existing oyster farms, provided they have suitable conditions. At current market rates of US$0.88-$3.30 per kg, farmers in southern New England have the potential to earn US$2,229 per 60 m longline. While seaweed aquaculture is growing, considerable barriers still exist that prevent wide-scale kelp aquaculture adoption by existing aquafarmers. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1655221
- PAR ID:
- 10437653
- Date Published:
- Journal Name:
- Frontiers in Aquaculture
- Volume:
- 2
- ISSN:
- 2813-5334
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            To keep global surface warming below 1.5°C by 2100, the portfolio of cost-effective CDR technologies must expand. To evaluate the potential of macroalgae CDR, we developed a kelp aquaculture bio-techno-economic model in which large quantities of kelp would be farmed at an offshore site, transported to a deep water “sink site”, and then deposited below the sequestration horizon (1,000 m). We estimated the costs and associated emissions of nursery production, permitting, farm construction, ocean cultivation, biomass transport, and Monitoring, Reporting, and Verification (MRV) for a 1,000 acre (405 ha) “baseline” project located in the Gulf of Maine, USA. The baseline kelp CDR model applies current systems of kelp cultivation to deep water (100 m) exposed sites using best available modeling methods. We calculated the levelized unit costs of CO 2 eq sequestration (LCOC; $ tCO 2 eq -1 ). Under baseline assumptions, LCOC was $17,048 tCO 2 eq -1 . Despite annually sequestering 628 tCO 2 eq within kelp biomass at the sink site, the project was only able to net 244 C credits (tCO 2 eq) each year, a true sequestration “additionality” rate (AR) of 39% (i.e., the ratio of net C credits produced to gross C sequestered within kelp biomass). As a result of optimizing 18 key parameters for which we identified a range within the literature, LCOC fell to $1,257 tCO 2 eq -1 and AR increased to 91%, demonstrating that substantial cost reductions could be achieved through process improvement and decarbonization of production supply chains. Kelp CDR may be limited by high production costs and energy intensive operations, as well as MRV uncertainty. To resolve these challenges, R&D must (1) de-risk farm designs that maximize lease space, (2) automate the seeding and harvest processes, (3) leverage selective breeding to increase yields, (4) assess the cost-benefit of gametophyte nursery culture as both a platform for selective breeding and driver of operating cost reductions, (5) decarbonize equipment supply chains, energy usage, and ocean cultivation by sourcing electricity from renewables and employing low GHG impact materials with long lifespans, and (6) develop low-cost and accurate MRV techniques for ocean-based CDR.more » « less
- 
            The emerging sector of offshore kelp aquaculture represents an opportunity to produce biofuel feedstock to help meet growing energy demand. Giant kelp represents an attractive aquaculture crop due to its rapid growth and production, however precision farming over large scales is required to make this crop economically viable. These demands necessitate high frequency monitoring to ensure outplant success, maximum production, and optimum quality of harvested biomass, while the long distance from shore and large necessary scales of production makes in person monitoring impractical. Remote sensing offers a practical monitoring solution and nascent imaging technologies could be leveraged to provide daily products of the kelp canopy and subsurface structures over unprecedented spatial scales. Here, we evaluate the efficacy of remote sensing from satellites and aerial and underwater autonomous vehicles as potential monitoring platforms for offshore kelp aquaculture farms. Decadal-scale analyses of the Southern California Bight showed that high offshore summertime cloud cover restricts the ability of satellite sensors to provide high frequency direct monitoring of these farms. By contrast, daily monitoring of offshore farms using sensors mounted to aerial and underwater drones seems promising. Small Unoccupied Aircraft Systems (sUAS) carrying lightweight optical sensors can provide estimates of canopy area, density, and tissue nitrogen content on the time and space scales necessary for observing changes in this highly dynamic species. Underwater color imagery can be rapidly classified using deep learning models to identify kelp outplants on a longline farm and high acoustic returns of kelp pneumatocysts from side scan sonar imagery signal an ability to monitor the subsurface development of kelp fronds. Current sensing technologies can be used to develop additional machine learning and spectral algorithms to monitor outplant health and canopy macromolecular content, however future developments in vehicle and infrastructure technologies are necessary to reduce costs and transcend operational limitations for continuous deployment in an offshore setting.more » « less
- 
            Farms for eastern oyster Crassostrea virginica , which are commonly located along shallow estuarine shores of the eastern USA, use a range of farm equipment and require regular access to care for and harvest oyster livestock. In some cases, these farms are located in areas used by Atlantic horseshoe crabs Limulus polyphemus as they come ashore during spring to spawn. The sandy shores of the Delaware Bay host the largest spawning aggregations of this species in the world. Limited studies have examined interactions between horseshoe crabs and intertidal oyster farms, and concern has been raised about the horseshoe crab’s ability to traverse oyster farms to reach spawning habitat. This study examines potential farm interactions with horseshoe crabs in Delaware Bay during the 2018 and 2019 crab spawning season. Our studies included a range of experiments and surveys during high and low tide to observe crab abundance and behavior at rack-and-bag oyster farm and non-farm sites. In all cases, results indicated that crabs can successfully traverse rack-and-bag farms and reach spawning beaches. Crabs do not differentially use farm versus non-farm areas, and crab behavior is relatively unaltered by farm gear. These results provide important context for developing frameworks for managing ecological interactions among farms and wildlife species of concern.more » « less
- 
            As the oyster aquaculture industry grows and becomes incorporated into management practices, it is important to understand its effects on local environments. This study investigated how water quality and hydrodynamics varied among farms as well as inside versus outside the extent of caged grow-out areas located in southern Chesapeake Bay. Current speed and water quality variables (chlorophyll-a fluorescence, turbidity, and dissolved oxygen) were measured along multiple transects within and adjacent to four oyster farms during two seasons. At the scale of individual aquaculture sites, we were able to detect statistically significant differences in current speed and water quality variables between the areas inside and outside the farms. However, the magnitudes of the water quality differences were minor. Differences between sites and between seasons for water quality variables were typically an order of magnitude greater than those observed within each site (i.e. inside and outside the farm footprint). The relatively small effect of the presence of oysters on water quality is likely attributable to a combination of high background variability, relatively high flushing rates, relatively low oyster density, and small farm footprints. Minimal impacts overall suggest that low-density oyster farms located in adequately-flushed areas are unlikely to negatively impact local water quality.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    