Abstract Higher-order genome organization and its variation in different cellular conditions remain poorly understood. Recent high-coverage genome-wide chromatin interaction mapping using Hi-C has revealed spatial segregation of chromosomes in the human genome into distinct subcompartments. However, subcompartment annotation, which requires Hi-C data with high sequencing coverage, is currently only available in the GM12878 cell line, making it impractical to compare subcompartment patterns across cell types. Here we develop a computational approach, SNIPER (Subcompartment iNference using Imputed Probabilistic ExpRessions), based on denoising autoencoder and multilayer perceptron classifier to infer subcompartments using typical Hi-C datasets with moderate coverage. SNIPER accurately reveals subcompartments using moderate coverage Hi-C datasets and outperforms an existing method that uses epigenomic features in GM12878. We apply SNIPER to eight additional cell lines and find that chromosomal regions with conserved and cell-type specific subcompartment annotations have different patterns of functional genomic features. SNIPER enables the identification of subcompartments without high-coverage Hi-C data and provides insights into the function and mechanisms of spatial genome organization variation across cell types.
more »
« less
A Heuristic Strategy for Multi-Mapping Reads to Enhance Hi-C Data
Current Hi-C analysis approaches focus on uniquely mapped reads and little research has been carried out to include multi-mapping reads, which leads to a lack of biological signals from DNA repetitive regions. We propose a heuristic strategy to assign multi-mapping reads to loci according to the distance to their closest restriction enzyme cutting sites. We demonstrate that the heuristic strategy can rescue multi-mapping reads thus enhance the quality of Hi-C data. Compared with mHi-C, it not only improves replicate reproducibility in the same cell type, but also maintains the difference between replicates of different cell types. Moreover, the strategy identifies much more common statistically significant chromatin interactions between Hi-C experiments of different restriction enzymes and has a huge advantage on computing resources. Therefore, the heuristic strategy can be used to enhance Hi-C data by utilizing multi-mapping reads.
more »
« less
- Award ID(s):
- 1946202
- PAR ID:
- 10318378
- Date Published:
- Journal Name:
- 2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Hi-C characterizes three-dimensional chromatin organization, facilitates haplotype phasing, and enables genome-assembly scaffolding, but encounters difficulties across complex regions. By coupling chromosome conformation capture (3C) with PacBio HiFilong-read sequencing, here we develop a method (CiFi) that enables analysis of genomic interactions across repetitive regions. Starting with as little as 60,000 cells (sub-microgram DNA), the method produces multi-kilobasepair HiFi reads that contain multiple interacting, concatenated segments (~350 bp to 2 kbp). This multiplicity and increase in segment length versus standard short-read-based Hi-C improves read-mapping efficiency and coverage in repetitive regions and enhances haplotype phasing. CiFi pairwise interactions are largely concordant with Hi-C from a human lymphoblastoid cell line, with gains in assigning topologically associating domains across centromeres, segmental duplications, and human disease-associated genomic hotspots. As CiFi requires less input versus established methods, we apply the approach to characterize single small insects: assaying chromatin interactions across the genome from anAnopheles coluzziimosquito and producing a chromosome-scale scaffolded assembly from aCeratitis capitataMediterranean fruit fly. Together, CiFi enables assessment of chromosome-scale interactions of previously recalcitrant low-complexity loci, low-input samples, and small organisms.more » « less
-
Abstract Motivation Read alignment is central to many aspects of modern genomics. Most aligners use heuristics to accelerate processing, but these heuristics can fail to find the optimal alignments of reads. Alignment accuracy is typically measured through simulated reads; however, the simulated location may not be the (only) location with the optimal alignment score. Results Vargas implements a heuristic-free algorithm guaranteed to find the highest-scoring alignment for real sequencing reads to a linear or graph genome. With semiglobal and local alignment modes and affine gap and quality-scaled mismatch penalties, it can implement the scoring functions of commonly used aligners to calculate optimal alignments. While this is computationally intensive, Vargas uses multi-core parallelization and vectorized (SIMD) instructions to make it practical to optimally align large numbers of reads, achieving a maximum speed of 456 billion cell updates per second. We demonstrate how these “gold standard” Vargas alignments can be used to improve heuristic alignment accuracy by optimizing command-line parameters in Bowtie 2, BWA-MEM, and vg to align more reads correctly. Availability and implementation Source code implemented in C ++ and compiled binary releases are available at https://github.com/langmead-lab/vargas under the MIT license. Supplementary information Supplementary data are available at Bioinformatics online.more » « less
-
Abstract MotivationMetagenomic binning aims to retrieve microbial genomes directly from ecosystems by clustering metagenomic contigs assembled from short reads into draft genomic bins. Traditional shotgun-based binning methods depend on the contigs’ composition and abundance profiles and are impaired by the paucity of enough samples to construct reliable co-abundance profiles. When applied to a single sample, shotgun-based binning methods struggle to distinguish closely related species only using composition information. As an alternative binning approach, Hi-C-based binning employs metagenomic Hi-C technique to measure the proximity contacts between metagenomic fragments. However, spurious inter-species Hi-C contacts inevitably generated by incorrect ligations of DNA fragments between species link the contigs from varying genomes, weakening the purity of final draft genomic bins. Therefore, it is imperative to develop a binning pipeline to overcome the shortcomings of both types of binning methods on a single sample. ResultsWe develop HiFine, a novel binning pipeline to refine the binning results of metagenomic contigs by integrating both Hi-C-based and shotgun-based binning tools. HiFine designs a strategy of fragmentation for the original bin sets derived from the Hi-C-based and shotgun-based binning methods, which considerably increases the purity of initial bins, followed by merging fragmented bins and recruiting unbinned contigs. We demonstrate that HiFine significantly improves the existing binning results of both types of binning methods and achieves better performance in constructing species genomes on publicly available datasets. To the best of our knowledge, HiFine is the first pipeline to integrate different types of tools for the binning of metagenomic contigs. Availability and implementationHiFine is available at https://github.com/dyxstat/HiFine. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
-
The spatial organization of chromatin is fundamental to gene regulation and essential for proper cellular function. The Hi-C technique remains the leading method for unraveling 3D genome structures, but the limited availability of high-resolution Hi-C data poses significant challenges for comprehensive analysis. Deep learning models have been developed to predict high-resolution Hi-C data from low-resolution counterparts. Early CNN-based models improved resolution but struggled with issues like blurring and capturing fine details. In contrast, GAN-based methods encountered difficulties in maintaining diversity and generalization. Additionally, most existing algorithms perform poorly in cross-cell line generalization, where a model trained on one cell type is used to enhance high-resolution data in another cell type. In this work, we propose DiCARN (Dilated Cascading Residual Network) to overcome these challenges and improve Hi-C data resolution. DiCARN leverages dilated convolutions and cascading residuals to capture a broader context while preserving fine-grained genomic interactions. Additionally, we incorporate DNase-seq data into our model, providing a robust framework that demonstrates superior generalizability across cell lines in high-resolution Hi-C data reconstruction. DiCARN is publicly available at https://github.com/OluwadareLab/DiCARNmore » « less
An official website of the United States government

