skip to main content


Title: How smart should a forager be?
Abstract We introduce an idealized model of an intelligent forager in which higher intelligence corresponds to a larger spatial range over which the forager can detect food. Such a forager diffuses randomly whenever the nearest food is more distant than the forager’s detection range, R , and moves ballistically towards the nearest food that is inside its detection range. Concomitantly, the forager’s metabolic energy cost per step is an increasing function of its intelligence. A dumb forager wanders randomly and may miss nearby food, thus making it susceptible to starvation. Conversely, a too-smart forager incurs a large metabolic cost per step during its search for food and is again susceptible to starvation. We show that the forager’s lifetime is maximized at an optimal, intermediate level of intelligence.  more » « less
Award ID(s):
1910736
NSF-PAR ID:
10318423
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Statistical Mechanics: Theory and Experiment
Volume:
2022
Issue:
3
ISSN:
1742-5468
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Marine ecosystems are vulnerable to climate driven events such as marine heatwaves yet we have a poor understanding of whether they will collapse or recover. Kelp forests are known to be susceptible, and there has been a rise in sea urchin barrens around the world. When temperatures increase so do physiological demands while food resources decline, tightening metabolic constraints. In this case study, we examine red abalone ( Haliotis rufescens ) looking at sublethal impacts and their prospects for recovery within kelp forests that have shifted to sea urchin barrens. Abalone are a recreationally fished species that once thrived in northern California’s bull kelp forests but have recently suffered mass mortalities since the 2014–2016 marine heatwave. Quantitative data exist on the health and reproduction of abalone both prior to and after the collapse. The survivors of the mass mortality show a 2-year lag in body and gonad condition indices. After the lag, body and gonad indexes decreased substantially, as did the relationship between shell length and body weight. Production of mature eggs per female declined by 99% ( p < 0.001), and the number of eggs per gram of female body weight (2,984/g) declined to near zero (9/g). The number of males with sperm was reduced by 33%, and the sperm abundance score was reduced by 28% ( p = 0.414). We observed that these reductions were for mature eggs and sperm while immature eggs and spermatids were still present in large numbers. In the lab, after reintroduction of kelp, weight gains were quickly lost following a second starvation period. This example illustrates how climate-driven declines in foundation species can suppress recovery of the system by impacting body condition and future reproduction of surviving individuals. Given the poor reproductive potential of the remaining abalone in northern California, coupled with ongoing mortality and low kelp abundances, we discuss the need to maintain the fishing moratorium and implement active abalone restoration measures. For fished species, such as abalone, this additional hurdle to recovery imposed by changes in climate is critical to understand and incorporate into resource management and restoration. 
    more » « less
  2. ABSTRACT The success of Mycobacterium tuberculosis as a human pathogen is due in part to its ability to survive stress conditions, such as hypoxia or nutrient deprivation, by entering nongrowing states. In these low-metabolism states, M. tuberculosis can tolerate antibiotics and develop genetically encoded antibiotic resistance, making its metabolic adaptation to stress crucial for survival. Numerous bacteria, including M. tuberculosis , have been shown to reduce their rates of mRNA degradation under growth limitation and stress. While the existence of this response appears to be conserved across species, the underlying bacterial mRNA stabilization mechanisms remain unknown. To better understand the biology of nongrowing mycobacteria, we sought to identify the mechanistic basis of mRNA stabilization in the nonpathogenic model Mycobacterium smegmatis . We found that mRNA half-life was responsive to energy stress, with carbon starvation and hypoxia causing global mRNA stabilization. This global stabilization was rapidly reversed when hypoxia-adapted cultures were reexposed to oxygen, even in the absence of new transcription. The stringent response and RNase levels did not explain mRNA stabilization, nor did transcript abundance. This led us to hypothesize that metabolic changes during growth cessation impact the activities of degradation proteins, increasing mRNA stability. Indeed, bedaquiline and isoniazid, two drugs with opposing effects on cellular energy status, had opposite effects on mRNA half-lives in growth-arrested cells. Taken together, our results indicate that mRNA stability in mycobacteria is not directly regulated by growth status but rather is dependent on the status of energy metabolism. IMPORTANCE The logistics of tuberculosis therapy are difficult, requiring multiple drugs for many months. Mycobacterium tuberculosis survives in part by entering nongrowing states in which it is metabolically less active and thus less susceptible to antibiotics. Basic knowledge on how M. tuberculosis survives during these low-metabolism states is incomplete, and we hypothesize that optimized energy resource management is important. Here, we report that slowed mRNA turnover is a common feature of mycobacteria under energy stress but is not dependent on the mechanisms that have generally been postulated in the literature. Finally, we found that mRNA stability and growth status can be decoupled by a drug that causes growth arrest but increases metabolic activity, indicating that mRNA stability responds to metabolic status rather than to growth rate per se . Our findings suggest a need to reorient studies of global mRNA stabilization to identify novel mechanisms that are presumably responsible. 
    more » « less
  3. Animals must balance their rates of energetic intake and expenditure while foraging. Several mathematical models have been put forward as energetically optimal foraging strategies when the food environment is sparse (i.e., the distance between food patches in the environment is much larger than the distance from which the forager can perceive food). In particular, Lévy walks with a power law exponent approaching 1 are considered optimal for destructive foragers. However, these models have yet to explore the role of sensory perception in foraging success as the distance between food patches approaches the distance from which the forager can perceive food. Here, we used an agent-based modeling approach to address this question. Our results concur that lower values of the power law exponent (i.e. values approaching 1) result in the most food found, but in contrast to previous studies, we note that, in many cases, lower exponents are not optimal when we consider food found per unit distance traveled. For example, higher values of the exponent resulted in comparable or higher foraging success relative to lower values when the forager's range of sensory perception was restricted to an angle±30° from its current heading. In addition, we find that sensory perception has a larger effect on foraging success than the power law exponent. These results suggest that a deeper examination of how animals perceive food sources from a distance may affect longstanding assumptions regarding the optimality of Lévy walk foraging patterns, and lend support to the developing theoretical shift towards models that place increasing emphasis on how organisms interact with their environments. 
    more » « less
  4. Introduction

    Computer vision and deep learning (DL) techniques have succeeded in a wide range of diverse fields. Recently, these techniques have been successfully deployed in plant science applications to address food security, productivity, and environmental sustainability problems for a growing global population. However, training these DL models often necessitates the large-scale manual annotation of data which frequently becomes a tedious and time-and-resource- intensive process. Recent advances in self-supervised learning (SSL) methods have proven instrumental in overcoming these obstacles, using purely unlabeled datasets to pre-train DL models.

    Methods

    Here, we implement the popular self-supervised contrastive learning methods of NNCLR Nearest neighbor Contrastive Learning of visual Representations) and SimCLR (Simple framework for Contrastive Learning of visual Representations) for the classification of spatial orientation and segmentation of embryos of maize kernels. Maize kernels are imaged using a commercial high-throughput imaging system. This image data is often used in multiple downstream applications across both production and breeding applications, for instance, sorting for oil content based on segmenting and quantifying the scutellum’s size and for classifying haploid and diploid kernels.

    Results and discussion

    We show that in both classification and segmentation problems, SSL techniques outperform their purely supervised transfer learning-based counterparts and are significantly more annotation efficient. Additionally, we show that a single SSL pre-trained model can be efficiently finetuned for both classification and segmentation, indicating good transferability across multiple downstream applications. Segmentation models with SSL-pretrained backbones produce DICE similarity coefficients of 0.81, higher than the 0.78 and 0.73 of those with ImageNet-pretrained and randomly initialized backbones, respectively. We observe that finetuning classification and segmentation models on as little as 1% annotation produces competitive results. These results show SSL provides a meaningful step forward in data efficiency with agricultural deep learning and computer vision.

     
    more » « less
  5. Humans can inherently adapt their gait pattern in a way that minimizes the metabolic cost of transport, or walking economy, within a few steps, which is faster than any known direct physiological sensor of metabolic energy. Instead, walking economy may be indirectly sensed through mechanoreceptors that correlate with the metabolic cost per step to make such gait adaptations. We tested whether velocity feedback from tibialis anterior (TA) muscle fascicles during the early stance phase of walking could potentially act to indirectly sense walking economy. As participants walked within a range of steady-state speeds and step frequencies, we observed that TA fascicles lengthen on almost every step. Moreover, the average peak fascicle velocity experienced during lengthening reflected the metabolic cost of transport of the given walking condition. We observed that the peak TA muscle activation occurred earlier than could be explained by a short latency reflex response. The activation of the TA muscle just prior to heel strike may serve as a prediction of the magnitude of the ground collision and the associated energy exchange. In this scenario, any unexpected length change experienced by the TA fascicle would serve as an error signal to the nervous system and provide additional information about energy lost per step. Our work helps provide a biomechanical framework to understand the possible neural mechanisms underlying the rapid optimization of walking economy. 
    more » « less