skip to main content


Title: Sensory perception plays a larger role in foraging efficiency than does heavy-tailed movement strategies.
Animals must balance their rates of energetic intake and expenditure while foraging. Several mathematical models have been put forward as energetically optimal foraging strategies when the food environment is sparse (i.e., the distance between food patches in the environment is much larger than the distance from which the forager can perceive food). In particular, Lévy walks with a power law exponent approaching 1 are considered optimal for destructive foragers. However, these models have yet to explore the role of sensory perception in foraging success as the distance between food patches approaches the distance from which the forager can perceive food. Here, we used an agent-based modeling approach to address this question. Our results concur that lower values of the power law exponent (i.e. values approaching 1) result in the most food found, but in contrast to previous studies, we note that, in many cases, lower exponents are not optimal when we consider food found per unit distance traveled. For example, higher values of the exponent resulted in comparable or higher foraging success relative to lower values when the forager's range of sensory perception was restricted to an angle±30° from its current heading. In addition, we find that sensory perception has a larger effect on foraging success than the power law exponent. These results suggest that a deeper examination of how animals perceive food sources from a distance may affect longstanding assumptions regarding the optimality of Lévy walk foraging patterns, and lend support to the developing theoretical shift towards models that place increasing emphasis on how organisms interact with their environments.  more » « less
Award ID(s):
1655529
NSF-PAR ID:
10135146
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Ecological modelling
Volume:
404
ISSN:
0304-3800
Page Range / eLocation ID:
69-82
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Small herbivores face risks of predation while foraging and are often forced to trade off food quality for safety. Life history, behaviour, and habitat of predator and prey can influence these trade‐offs. We compared how two sympatric rabbits (pygmy rabbit,Brachylagus idahoensis; mountain cottontail,Sylvilagus nuttallii) that differ in size, use of burrows, and habitat specialization in the sagebrush‐steppe of westernNorthAmerica respond to amount and orientation of concealment cover and proximity to burrow refuges when selecting food patches. We predicted that both rabbit species would prefer food patches that offered greater concealment and food patches that were closer to burrow refuges. However, because pygmy rabbits are small, obligate burrowers that are restricted to sagebrush habitats, we predicted that they would show stronger preferences for greater cover, orientation of concealment, and patches closer to burrow refuges. We offered two food patches to individuals of each species during three experiments that either varied in the amount of concealment cover, orientation of concealment cover, or distance from a burrow refuge. Both species preferred food patches that offered greater concealment, but pygmy rabbits generally preferred terrestrial and mountain cottontails preferred aerial concealment. Only pygmy rabbits preferred food patches closer to their burrow refuge. Different responses to concealment and proximity to burrow refuges by the two species likely reflect differences in perceived predation risks. Because terrestrial predators are able to dig for prey in burrows, animals like pygmy rabbits that rely on burrow refuges might select food patches based more on terrestrial concealment. In contrast, larger habitat generalists that do not rely on burrow refuges, like mountain cottontails, might trade off terrestrial concealment for visibility to detect approaching terrestrial predators. This study suggests that body size and evolutionary adaptations for using habitat, even in closely related species, might influence anti‐predator behaviors in prey species.

     
    more » « less
  2. Nearly all animals forage to acquire energy for survival through efficient search and resource harvesting. Patch exploitation is a canonical foraging behaviour, but there is a need for more tractable and understandable mathematical models describing how foragers deal with uncertainty. To provide such a treatment, we develop a normative theory of patch foraging decisions, proposing mechanisms by which foraging behaviours emerge in the face of uncertainty. Our model foragers statistically and sequentially infer patch resource yields using Bayesian updating based on their resource encounter history. A decision to leave a patch is triggered when the certainty of the patch type or the estimated yield of the patch falls below a threshold. The time scale over which uncertainty in resource availability persists strongly impacts behavioural variables like patch residence times and decision rules determining patch departures. When patch depletion is slow, as in habitat selection, departures are characterized by a reduction of uncertainty, suggesting that the forager resides in a low-yielding patch. Uncertainty leads patch-exploiting foragers to overharvest (underharvest) patches with initially low (high) resource yields in comparison with predictions of the marginal value theorem. These results extend optimal foraging theory and motivate a variety of behavioural experiments investigating patch foraging behaviour. 
    more » « less
  3. Abstract

    The Marginal Value Theorem (MVT) is an integral supplement to Optimal Foraging Theory (OFT) as it seeks to explain an animal's decision of when to leave a patch when food is still available. MVT predicts that a forager capable of depleting a patch, in a habitat where food is patchily distributed, will leave the patch when the intake rate within it decreases to the average intake rate for the habitat. MVT relies on the critical assumption that the feeding rate in the patch will decrease over time. We tested this assumption using feeding data from a population of wild Bornean orangutans (Pongo pygmaeus wurmbii) from Gunung Palung National Park. We hypothesized that the feeding rate within orangutan food patches would decrease over time. Data included feeding bouts from continuous focal follows between 2014 and 2016. We recorded the average feeding rate over each tertile of the bout, as well as the first, midpoint, and last feeding rates collected. We did not find evidence of a decrease between first and last feeding rates (Linear Mixed Effects Model,n = 63), between a mid‐point and last rate (Linear Mixed Effects Model,n = 63), between the tertiles (Linear Mixed Effects Model,n = 63), nor a decrease in feeding rate overall (Linear Mixed Effects Model,n = 146). These findings, thus, do not support the MVT assumption of decreased patch feeding rates over time in this large generalist frugivore.

     
    more » « less
  4. A central challenge in password security is to characterize the attacker's guessing curve i.e., what is the probability that the attacker will crack a random user's password within the first G guesses. A key challenge is that the guessing curve depends on the attacker's guessing strategy and the distribution of user passwords both of which are unknown to us. In this work we aim to follow Kerckhoffs's principal and analyze the performance of an optimal attacker who knows the password distribution. Let \lambda_G denote the probability that such an attacker can crack a random user's password within G guesses. We develop several statistically rigorous techniques to upper and lower bound \lambda_G given N independent samples from the unknown password distribution P. We show that our upper/lower bounds on \lambda_G hold with high confidence and we apply our techniques to analyze eight large password datasets. Our empirical analysis shows that even state-of-the-art password cracking models are often significantly less guess efficient than an attacker who can optimize its attack based on its (partial) knowledge of the password distribution. We also apply our statistical tools to re-examine different models of the password distribution i.e., the empirical password distribution and Zipf's Law. We find that the empirical distribution closely matches our upper/lower bounds on \lambda_G when the guessing number G is not too large i.e., G << N. However, for larger values of G our empirical analysis rigorously demonstrates that the empirical distribution (resp. Zipf's Law) overestimates the attacker's success rate. We apply our statistical techniques to upper/lower bound the effectiveness of password throttling mechanisms (key-stretching) which are used to reduce the number of attacker guesses G. Finally, if we are willing to make an additional assumption about the way users respond to password restrictions, we can use our statistical techniques to evaluate the effectiveness of various password composition policies which restrict the passwords that users may select. 
    more » « less
  5. Abstract

    How intensely animals use habitat features depends on their functional properties (i.e., how the feature influences fitness) and the spatial and temporal scale considered. For herbivores, habitat use is expected to reflect the competing risks of starvation, predation, and thermal stress, but the relative influence of each functional property is expected to vary in space and time. We examined how a dietary and habitat specialist, the pygmy rabbit (Brachylagus idahoensis), used these functional properties of its sagebrush habitat—food quality, security, and thermal refuge—at two hierarchical spatial scales (microsite and patch) across two seasons (winter and summer). At the microsite and patch scales, we determined which plant functional traits predicted the number of bites (i.e., foraging) by pygmy rabbits and the number of their fecal pellets (i.e., general habitat use). Pygmy rabbits used microsites and patches more intensely that had higher crude protein and aerial concealment cover and were closer to burrows. Food quality was more influential when rabbits used microsites within patches. Security was more influential in winter than summer, and more at Cedar Gulch than Camas. However, the influence of functional properties depended on phytochemical and structural properties of sagebrush and was not spatiotemporally consistent. These results show function‐dependent habitat use that varied according to specific activities by a central‐place browsing herbivore. Making spatially explicit predictions of the relative value of habitat features that influence different types of habitat use (i.e., foraging, hiding, and thermoregulating) will improve how we predict patterns of habitat use by herbivores and how we monitor and manage functional traits within habitats for wildlife.

     
    more » « less