- Award ID(s):
- 1852139
- NSF-PAR ID:
- 10318483
- Date Published:
- Journal Name:
- Innovations
- Volume:
- 6
- Issue:
- 4
- ISSN:
- 2472-2553
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Objective Over the past decade, we developed and studied a face-to-face video-based analysis-of-practice professional development (PD) model. In a cluster randomized trial, we found that the face-to-face model enhanced elementary science teacher knowledge and practice and resulted in important improvements to student science achievement (student treatment effect, d = 0.52; Taylor et al, 2017; Roth et al, 2018). The face-to-face PD model is expensive and difficult to scale. In this paper, we present the results of a two-year design-based research study to translate the face-to-face PD into a facilitated online PD experience. The purpose is to create an effective, flexible, and cost-efficient PD model that will reach a broader audience of teachers. Perspective/Theoretical Framework The face-to-face PD model is grounded in situated cognition and cognitive apprenticeship frameworks. Teachers engage in learning science content and effective science teaching practices in the context in which they will be teaching. There are scaffolded opportunities for teachers to learn from analysis of model videos by experienced teachers, to try teaching model units, to analyze video of their own teaching efforts, and ultimately to develop their own unit, with guidance. The PD model attends to the key features of effective PD as described by Desimone (2009) and others. We adhered closely to the design principles of the face-to-face model as described by Authors, 2019. Methods We followed a design-based research approach (DBR; Cobb et al., 2003; Shavelson et al., 2003) to examine the online program components and how they promoted or interfered with the development of teachers’ knowledge and reflective practice. Of central interest was the examination of mechanisms for facilitating teacher learning (Confrey, 2006). To accomplish this goal, design researchers engaged in iterative cycles of problem analysis, design, implementation, examination, and redesign (Wang & Hannafin, 2005) in phase one of the project before studying its effect. Data Three small pilot groups of teachers engaged in both synchronous and asynchronous components of the larger online course which began implementation with a 10-week summer course that leads into study groups of participants meeting through one academic year. We iteratively designed, tested, and revised 17 modules across three pilot versions. On average, pilot groups completed one module every two weeks. Pilot 1 began the work in May 2019; Pilot 2 began in August 2019, and Pilot 3 began in October 2019. Pilot teachers responded to surveys and took part in interviews related to the PD. The PD facilitators took extensive notes after each iteration. The development team met weekly to discuss revisions. We revised all modules between each pilot group and used what we learned to inform our development of later modules within each pilot. For example, we applied what we learned from testing Module 3 with Pilot 1 to the development of Module 3 for Pilots 2, and also applied what we learned from Module 3 with Pilot 1 to the development of Module 7 for Pilot 1. Results We found that community building required the same incremental trust-building activities that occur in face-to-face PD. Teachers began with low-risk activities and gradually engaged in activities that required greater vulnerability (sharing a video of themselves teaching a model unit for analysis and critique by the group). We also identified how to contextualize technical tools with instructional prompts to allow teachers to productively interact with one another about science ideas asynchronously. As part of that effort, we crafted crux questions to surface teachers’ confusions or challenges related to content or pedagogy. We called them crux questions because they revealed teachers’ uncertainty and deepened learning during the discussion. Facilitators leveraged asynchronous responses to crux questions in the synchronous sessions to push teacher thinking further than would have otherwise been possible in a 2-hour synchronous video-conference. Significance Supporting teachers with effective, flexible, and cost-efficient PD is difficult under the best of circumstances. In the era of covid-19, online PD has taken on new urgency. NARST members will gain insight into the translation of an effective face-to-face PD model to an online environment.more » « less
-
Objective Over the past decade, we developed and studied a face-to-face video-based analysis-of-practice PD model. In a cluster randomized trial, we found that the face-to-face model enhanced elementary science teacher knowledge and practice, and resulted in important improvements to student science achievement (student treatment effect, d = 0.52; Taylor et al., 2017: Roth et al., 2018). The face-to-face PD model is expensive and difficult to scale. In this poster, we present the results of a two-year design-based research study to translate the face-to-face PD into a facilitated online PD experience. The purpose is to create an effective, flexible, and cost-efficient PD model that will reach a broader audience of teachers. Perspective/Theoretical Framework The face-to-face PD model is grounded in situated cognition and cognitive apprenticeship frameworks. Teachers engage in learning science content and practices in the context in which they will be teaching. In addition, there are scaffolded opportunities for teachers to learn from model videos by experienced teachers, try model units, and ultimately develop their own unit, with guidance. The PD model also attends to the key features of effective PD as described by Desimone (2009) and others. We adhered closely to the design principles of the face-to-face model as described by Roth et al., 2018. Methods We followed a design-based research approach (DBR: Cobb et al., 2003: Shavelson et al., 2003) to examine the online program components and how they promoted or interfered with the development of teachers’ knowledge and reflective practice. Of central interest was the examination of mechanisms for facilitating teacher learning (Confrey, 2006). To accomplish this goal, design researchers engaged in iterative cycles of problem analysis, design, implementation, examination, and redesign (Wang & Hannafin, 2005). Data We iteratively designed, tested, and revised 17 modules across three pilot versions. Three small groups of teachers engaged in both synchronous and asynchronous components of the larger online course. They responded to surveys and took part in interviews related to the PD. The PD facilitators took extensive notes after each iteration. The development team met weekly to discuss revisions. Results We found that community building required the same incremental trust-building activities that occur in face-to-face PD. Teachers began with low-risk activities and gradually engaged in activities that required greater vulnerability (sharing a video of themselves teaching a model unit for analysis and critique by the group). We also identified how to contextualize technical tools with instructional prompts to allow teachers to productively interact with one another about science ideas asynchronously. As part of that effort, we crafted crux questions to surface teachers’ confusions or challenges related to content or pedagogy. Facilitators leveraged asynchronous responses to crux questions in the synchronous sessions to push teacher thinking further than would have otherwise been possible in a 2-hour synchronous video-conference. Significance Supporting teachers with effective, flexible, and cost-efficient PD is difficult under the best of circumstances. In the era of COVID-19, online PD has taken on new urgency. AERA members will gain insight into the construction of an online PD for elementary science teachers/ Full digital poster available at: https://aera21-aera.ipostersessions.com/default.aspx?s=64-5F-86-2E-15-F8-C3-C0-45-C6-A0-B7-1D-90-BE-46more » « less
-
Computer science (CS) education is plagued by a gender divide, with few girls and women participating in this high-status discipline. A proven strategy to broaden participation for girls and other underrepresented students interested in CS is the availability of teacher preparation that requires classroom teachers to grow their knowledge of CS content as well as the pedagogical practices that enhance inclusive learning opportunities for historically underrepresented students. This case study describes the design and impact of an Online Professional Development (PD) for CS teachers, a year-long PD program aimed at broadening participation in the United States. Using survey and observation data from more than 200 participants over three years in PD settings, this paper examines how the design of an online learning community model of PD provides an inclusive venue for teachers to examine their belief systems, develop inclusive pedagogical practices, and collectively transform the culture of CS classrooms to places that support all learners. Findings suggest that purposeful facilitation creates a transformative culture of “shared experience” whereby facilitators and groups of teachers engage in collaborative lesson planning and debriefing discussions, in both synchronous and asynchronous sessions. This case study can inform other online PD efforts aimed at broadening participation in computing.more » « less
-
Abstract In this study, support for teaching data literacy in social studies is provided through the design of a pedagogical support system informed by participatory design sessions with both pre‐service and in‐service social studies teachers. It provides instruction on teaching and learning data literacy in social studies, examples of standards‐based lesson plans, made‐to‐purpose data visualization tools and minimal manuals that put existing online tools in a social studies context. Based on case studies of eleven practicing teachers, this study provides insight into features of technology resources that social studies teachers find usable and useful for using data visualizations as part of standards‐ and inquiry‐based social studies instruction, teaching critical analysis of data visualizations and helping students create data visualizations with online computing tools. The final result, though, is that few of our participating teachers have yet adopted the provided resources into their own classrooms, which highlights weaknesses of the technology acceptance model for describing teacher adoption.
Practitioner notes What is already known about this topic
Data literacy is an important part of social studies education in the United States.
Most teachers do not teach data literacy as a part of social studies.
Teachers may adopt technology to help them teach data literacy if they think it is useful and usable.
What this paper adds
Educational technology can help teachers learn about data literacy in social studies.
Social studies teachers want simple tools that fit with their existing curricula, give them new project ideas and help students learn difficult concepts.
Making tools useful and usable does not predict adoption; context plays a large role in a social studies teachers' adoption.
Implications for practice and/or policy
Designing purpose‐built tools for social studies teachers will encourage them to teach data literacy in their classes.
Professional learning opportunities for teachers around data literacy should include opportunities for experimentation with tools.
Teachers are not likely to use tools if they are not accompanied by lesson and project ideas.
-
Integrated STEM approaches in K-12 science and math instruction can be more engaging and meaningful for students and often meet the curriculum content and practice goals better than single-subject lessons. Engineering, as a key component of STEM education, offers hands-on, designed-based, problem solving activities to drive student interest and confidence in STEM overall. However, K-12 STEM teachers may not feel equipped to implement engineering practices and may even experience anxiety about trying them out in their classrooms without the added support of professional development and professional learning communities. To address these concerns and support engineering integration, this research study examined the experiences of 18 teachers in one professional development program dedicated to STEM integration and engineering pedagogy for K-12 classrooms. This professional development program positioned the importance of the inclusion of engineering content and encouraged teachers to explore community-based, collaborative activities that identified and spoke to societal needs and social impacts through engineering integration. Data collected from two of the courses in this project, Enhancing Mathematics with STEM and Engineering in the K-12 Classroom, included participant reflections, focus groups, microteaching lesson plans, and field notes. Through a case study approach and grounded theory analysis, themes of self-efficacy, active learning supports, and social justice teaching emerged. The following discussion on teachers’ engineering and STEM self-efficacy, teachers’ integration of engineering to address societal needs and social impacts, and teachers’ development in engineering education through hands-on activities, provides better understanding of engineering education professional development for K-12 STEM teachers.more » « less