Real-time navigation in non-trivial environments by micro aerial vehicles (MAVs) predominantly relies on modelling the MAV with idealized geometry, such as a sphere. Simplified, conservative representations increase the likelihood of a planner failing to identify valid paths. That likelihood increases the more a robot's geometry differs from the idealized version. Few current approaches consider these situations; we are unaware of any that do so using perception space representations. This work introduces the egocan, a perception space obstacle representation using line-of-sight free space estimates, and 3D Gap, a perception space approach to gap finding for identifying goal-directed, collision-free directions of travel through 3D space. Both are integrated, with real-time considerations in mind, to define a local planner module of a hierarchical navigation system. The result is Aerial Local Planning in Perception Space (AeriaLPiPS). AeriaLPiPS is shown to be capable of safely navigating a MAV with non-idealized geometry through various environments, including those impassable by traditional real-time approaches. The open source implementation of this work is available at github.com/ivaROS/AeriaLPiPS.
more »
« less
Ego-centric Stereo Navigation Using Stixel World
This paper explores the use of passive, stereo sensing for vision-based navigation. The traditional approach uses dense depth algorithms, which can be computationally costly or potentially inaccurate. These drawbacks compound when including the additional computational demands associated to the sensor fusion, collision checking, and path planning modules that interpret the dense depth measurements. These problems can be avoided through the use of the stixel representation, a compact and sparse visual representation for local free-space. When integrated into a Planning in Perception Space based hierarchical navigation framework, stixels permit fast and scalable navigation for different robot geometries. Computational studies quantify the processing performance and demonstrate the favorable scaling properties over comparable dense depth methods. Navigation benchmarking demonstrates more consistent performance across high and low performance compute hardware for PiPS-based stixel navigation versus traditional hierarchical navigation.
more »
« less
- Award ID(s):
- 1849333
- PAR ID:
- 10318591
- Date Published:
- Journal Name:
- International Conference on Robotics and Automation
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Safe quadrupedal navigation through unknown environments is a challenging problem. This paper proposes a hierarchical vision-based planning framework (GPF-BG) integrating our previous Global Path Follower (GPF) navigation system and a gap-based local planner using Bézier curves, so called B ézier Gap (BG). This BG-based trajectory synthesis can generate smooth trajectories and guarantee safety for point-mass robots. With a gap analysis extension based on non-point, rectangular geometry, safety is guaranteed for an idealized quadrupedal motion model and significantly improved for an actual quadrupedal robot model. Stabilized perception space improves performance under oscillatory internal body motions that impact sensing. Simulation-based and real experiments under different benchmarking configurations test safe navigation performance. GPF-BG has the best safety outcomes across all experiments.more » « less
-
Billard, A ; Asfour, T ; Khatib, O. (Ed.)Task planning is the problem of finding a discrete sequence of actions to achieve a goal. Unfortunately, task planning in robotic domains is computationally challenging. To address this, in our prior work, we explained how knowledge from a successful task solution can be cached for later use, as an “abstract skill.” Such a skill is represented as a trace of states (“road map”) in an abstract space and can be matched with new tasks on-demand. This paper explains how one can use a library of abstract skills, derived from past planning experience, to reduce the computational cost of solving new task planning problems. As we explain, matching a skill to a task allows us to decompose it into independent sub-tasks, which can be quickly solved in parallel. This can be done automatically and dynamically during planning. We begin by formulating this problem of “planning with skills” as a constraint satisfaction problem. We then provide a hierarchical solution algorithm, which integrates with any standard task planner. Finally, we experimentally demonstrate the computational benefits of the approach for reach-avoid tasks.more » « less
-
Despite recent progress, learning new tasks through language instructions remains an extremely challenging problem. On the ALFRED benchmark for task learning, the published state-of-the-art system only achieves a task success rate of less than 10% in an unseen environment, compared to the human performance of over 90%. To address this issue, this paper takes a closer look at task learning. In a departure from a widely applied end-to-end architecture, we decomposed task learning into three sub-problems: sub-goal planning, scene navigation, and object manipulation; and developed a model HiTUT1 (stands for Hierarchical Tasks via Unified Transformers) that addresses each sub-problem in a unified manner to learn a hierarchical task structure. On the ALFRED benchmark, HiTUT has achieved the best performance with a remarkably higher generalization ability. In the unseen environment, HiTUT achieves over 160% performance gain in success rate compared to the previous state of the art. The explicit representation of task structures also enables an in-depth understanding of the nature of the problem and the ability of the agent, which provides insight for future benchmark development and evaluation.more » « less
-
This paper presents a hybrid online Partially Observable Markov Decision Process (POMDP) planning system that addresses the problem of autonomous navigation in the presence of multi-modal uncertainty introduced by other agents in the environment. As a particular example, we consider the problem of autonomous navigation in dense crowds of pedestrians and among obstacles. Popular approaches to this problem first generate a path using a complete planner (e.g., Hybrid A*) with ad-hoc assumptions about uncertainty, then use online tree-based POMDP solvers to reason about uncertainty with control over a limited aspect of the problem (i.e. speed along the path). We present a more capable and responsive real-time approach enabling the POMDP planner to control more degrees of freedom (e.g., both speed AND heading) to achieve more flexible and efficient solutions. This modification greatly extends the region of the state space that the POMDP planner must reason over, significantly increasing the importance of finding effective roll-out policies within the limited computational budget that real time control affords. Our key insight is to use multi-query motion planning techniques (e.g., Probabilistic Roadmaps or Fast Marching Method) as priors for rapidly generating efficient roll-out policies for every state that the POMDP planning tree might reach during its limited horizon search. Our proposed approach generates trajectories that are safe and significantly more efficient than the previous approach, even in densely crowded dynamic environments with long planning horizons.more » « less