skip to main content


This content will become publicly available on May 29, 2024

Title: GPF-BG: A Hierarchical Vision-Based Planning Framework for Safe Quadrupedal Navigation
Safe quadrupedal navigation through unknown environments is a challenging problem. This paper proposes a hierarchical vision-based planning framework (GPF-BG) integrating our previous Global Path Follower (GPF) navigation system and a gap-based local planner using Bézier curves, so called B ézier Gap (BG). This BG-based trajectory synthesis can generate smooth trajectories and guarantee safety for point-mass robots. With a gap analysis extension based on non-point, rectangular geometry, safety is guaranteed for an idealized quadrupedal motion model and significantly improved for an actual quadrupedal robot model. Stabilized perception space improves performance under oscillatory internal body motions that impact sensing. Simulation-based and real experiments under different benchmarking configurations test safe navigation performance. GPF-BG has the best safety outcomes across all experiments.  more » « less
Award ID(s):
2144309 1849333
NSF-PAR ID:
10436247
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International Conference on Robotics and Automation
Page Range / eLocation ID:
1968 to 1975
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Animals flexibly select actions that maximize future rewards despite facing uncertainty in sen- sory inputs, action-outcome associations or contexts. The computational and circuit mechanisms underlying this ability are poorly understood. A clue to such computations can be found in the neural systems involved in representing sensory features, sensorimotor-outcome associations and contexts. Specifically, the basal ganglia (BG) have been implicated in forming sensorimotor-outcome association [1] while the thalamocortical loop between the prefrontal cortex (PFC) and mediodorsal thalamus (MD) has been shown to engage in contextual representations [2, 3]. Interestingly, both human and non-human animal experiments indicate that the MD represents different forms of uncertainty [3, 4]. However, finding evidence for uncertainty representation gives little insight into how it is utilized to drive behavior. Normative theories have excelled at providing such computational insights. For example, de- ploying traditional machine learning algorithms to fit human decision-making behavior has clarified how associative uncertainty alters exploratory behavior [5, 6]. However, despite their computa- tional insight and ability to fit behaviors, normative models cannot be directly related to neural mechanisms. Therefore, a critical gap exists between what we know about the neural representa- tion of uncertainty on one end and the computational functions uncertainty serves in cognition. This gap can be filled with mechanistic neural models that can approximate normative models as well as generate experimentally observed neural representations. In this work, we build a mechanistic cortico-thalamo-BG loop network model that directly fills this gap. The model includes computationally-relevant mechanistic details of both BG and thalamocortical circuits such as distributional activities of dopamine [7] and thalamocortical pro- jection modulating cortical effective connectivity [3] and plasticity [8] via interneurons. We show that our network can more efficiently and flexibly explore various environments compared to com- monly used machine learning algorithms and we show that the mechanistic features we include are crucial for handling different types of uncertainty in decision-making. Furthermore, through derivation and mathematical proofs, we approximate our models to two novel normative theories. We show mathematically the first has near-optimal performance on bandit tasks. The second is a generalization on the well-known CUMSUM algorithm, which is known to be optimal on single change point detection tasks [9]. Our normative model expands on this by detecting multiple sequential contextual changes. To our knowledge, our work is the first to link computational in- sights, normative models and neural realization together in decision-making under various forms of uncertainty. 
    more » « less
  2. This study proposes a hierarchically integrated framework for safe task and motion planning (TAMP) of bipedal locomotion in a partially observable environment with dynamic obstacles and uneven terrain. The high-level task planner employs linear temporal logic for a reactive game synthesis between the robot and its environment and provides a formal guarantee on navigation safety and task completion. To address environmental partial observability, a belief abstraction model is designed by partitioning the environment into multiple belief regions and employed at the high-level navigation planner to estimate the dynamic obstacles' location. This additional location information of dynamic obstacles offered by belief abstraction enables less conservative long-horizon navigation actions beyond guaranteeing immediate collision avoidance. Accordingly, a synthesized action planner sends a set of locomotion actions to the middle-level motion planner while incorporating safe locomotion specifications extracted from safety theorems based on a reduced-order model (ROM) of the locomotion process. The motion planner employs the ROM to design safety criteria and a sampling algorithm to generate nonperiodic motion plans that accurately track high-level actions. At the low level, a foot placement controller based on an angular-momentum linear inverted pendulum model is implemented and integrated with an ankle-actuated passivity-based controller for full-body trajectory tracking. To address external perturbations, this study also investigates the safe sequential composition of the keyframe locomotion state and achieves robust transitions against external perturbations through reachability analysis. The overall TAMP framework is validated with extensive simulations and hardware experiments on bipedal walking robots Cassie and Digit designed by Agility Robotics. 
    more » « less
  3. This paper proposes a novel neural network-based control policy to enable a mobile robot to navigate safety through environments filled with both static obstacles, such as tables and chairs, and dense crowds of pedestrians. The network architecture uses early fusion to combine a short history of lidar data with kinematic data about nearby pedestrians. This kinematic data is key to enable safe robot navigation in these uncontrolled, human-filled environments. The network is trained in a supervised setting, using expert demonstrations to learn safe navigation behaviors. A series of experiments in detailed simulated environments demonstrate the efficacy of this policy, which is able to achieve a higher success rate than either standard model-based planners or state-of-the-art neural network control policies that use only raw sensor data. 
    more » « less
  4. Abstract

    Shared control of mobile robots integrates manual input with auxiliary autonomous controllers to improve the overall system performance. However, prior work that seeks to find the optimal shared control ratio needs an accurate human model, which is usually challenging to obtain. In this study, the authors develop an extended Twin Delayed Deep Deterministic Policy Gradient (DDPG) (TD3X)‐based shared control framework that learns to assist a human operator in teleoperating mobile robots optimally. The robot's states, shared control ratio in the previous time step, and human's control input is used as inputs to the reinforcement learning (RL) agent, which then outputs the optimal shared control ratio between human input and autonomous controllers without knowing the human model. Noisy softmax policies are developed to make the TD3X algorithm feasible under the constraint of a shared control ratio. Furthermore, to accelerate the training process and protect the robot, a navigation demonstration policy and a safety guard are developed. A neural network (NN) structure is developed to maintain the correlation of sensor readings among heterogeneous input data and improve the learning speed. In addition, an extended DAGGER (DAGGERX) human agent is developed for training the RL agent to reduce human workload. Robot simulations and experiments with humans in the loop are conducted. The results show that the DAGGERX human agent can simulate real human inputs in the worst‐case scenarios with a mean square error of 0.0039. Compared to the original TD3 agent, the TD3X‐based shared control system decreased the average collision number from 387.3 to 44.4 in a simplistic environment and 394.2 to 171.2 in a more complex environment. The maximum average return increased from 1043 to 1187 with a faster converge speed in the simplistic environment, while the performance is equally good in the complex environment because of the use of an advanced human agent. In the human subject tests, participants' average perceived workload was significantly lower in shared control than that in exclusively manual control (26.90 vs. 40.07,p = 0.013).

     
    more » « less
  5. This paper describes a hierarchical solution consisting of a multi-phase planner and a low-level safe controller to jointly solve the safe navigation problem in crowded, dynamic, and uncertain environments. The planner employs dynamic gap analysis and trajectory optimization to achieve collision avoidance with respect to the predicted trajectories of dynamic agents within the sensing and planning horizon and with robustness to agent uncertainty. To address uncertainty over the planning horizon and real-time safety, a fast reactive safe set algorithm (SSA) is adopted, which monitors and modifies the unsafe control during trajectory tracking. Compared to other existing methods, our approach offers theoretical guarantees of safety and achieves collision-free navigation with higher probability in uncertain environments, as demonstrated in scenarios with 20 and 50 dynamic agents. 
    more » « less