skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: System Identification Flight Testing of Inverted V-Tail Small Unmanned Air System
This paper presents an approach for generating linear time invariant state-space models of a small Unmanned Air System. An instrumentation system using the robot operating system with commercial-off-the-shelf components is implemented to record flight data and inject auto- mated excitation signals. Offline system identification is conducted using the Observer/Kalman Identification algorithm to produce a discrete-time linear time invariant state-space model, which is then converted to a continuous time-model for analysis. Challenges concerning data collection and inverted V-Tail modelling are discussed, and solutions are presented. Longitudiunal, lateral/directional and combined longitudinal lateral/directional models of the test vehicle are generated using both manual and automated excitations, and are presented and compared. The generated longitudinal and lateral/directional results are compared to results for a small Unmanned Air System with a standard empennage. Flight test results presented in the paper show decent matching between the decoupled longitudinal and lateral/directional model and the combined longitudinal/lateral directional model.  more » « less
Award ID(s):
1946890
PAR ID:
10318611
Author(s) / Creator(s):
Date Published:
Journal Name:
AIAA SCITECH 2022 Forum
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Certain dynamic modes of asymmetric quadrotor configurations are difficult to accurately model analytically. This paper synthesizes an analytical nonlinear parametric state-space model of an asymmetric quadrotor, and verifies it using a non-parametric model calculated from experimentally measured inputs and outputs of the actual vehicle. The offline system identification process produces a discrete-time Linear Time Invariant state-space model using the Observer Kalman Identification algorithm. This model is converted to a continuous time model for comparison to the linearized analytical model. Eigenvlaues,modes, and mode metrics are used to compare the parametric and non-parametric linear models. Results presented in the paper demonstrate that the identified linear model compares well to the linearized analytical model and validates the approach. 
    more » « less
  2. This paper develops an active sensing system for a bicycle to accurately track rear vehicles that can have two-dimensional motion. The active sensing system consists of a single-beam laser sensor mounted on a rotationally controlled platform. The sensing system is inexpensive, small, lightweight, consumes low power, and is thus ideally suited for the bicycle application. The rotational orientation of the laser sensor needs to be actively controlled in real-time in order to continue to focus on a rear vehicle, as the vehicle’s lateral and longitudinal distances change. This tracking problem requires controlling the real-time angular position of the laser sensor without knowing the future trajectory of the vehicle. The challenge is addressed using a novel receding horizon framework for active control and an interacting multiple model framework for estimation. The features and benefits of this active sensing system are illustrated first using simulation results. Then, preliminary experimental results are presented using an instrumented bicycle to show the feasibility of the system in tracking rear vehicles during both straight and turning maneuvers. 
    more » « less
  3. Abstract The concept of Advanced Air Mobility involves utilizing cutting-edge transportation platforms to transport passengers and cargo efficiently over short distances in urban and suburban areas. However, using simplified atmospheric models for aircraft simulations can prove insufficient for modeling large disturbances impacting low-altitude flight regimes. Due to the complexities of operating in urban environments, realistic wind modeling is necessary to ensure trajectory planning and control design can maintain high levels of safety. In this study, we simulate the dynamic response of a representative advanced air mobility platform operating in wing-borne flight through an urban wind field generated using Large Eddy Simulations (LES) and a wind field created using reduced-order models based on full-order computational solutions. Our findings show that the longitudinal response of the aircraft was not greatly affected by the fidelity of the LES models or if the spatial variation was considered while evaluating the full-order wind model. This is encouraging as it indicates that the full LES generation of the wind field may not be necessary, which decreases the complexity and time needed in this analysis. Differences are present when comparing the lateral response, owing to the differences in the asymmetric loading of the planform in the full and reduced order models. These differences seen in the lateral responses are expected to increase for planforms with smaller wing loadings, which could pose challenges. Additionally, the response of the aircraft to the mean wind field, the temporal average of the full order model, was misrepresentative in the longitudinal response and greatly under-predicted control surface activity, particularly in the lateral response. 
    more » « less
  4. Small rotorcraft unmanned air vehicles (sUAVs) are valuable tools in solving geospatial inspection challenges. One area where this is being widely explored is disaster reconnaissance [1]. Using sUAVs to collect images provides engineers and government officials critical information about the conditions before and after a disaster [2]. This is accomplished by creating high- fidelity 3D models from the sUAV’s imagery. However, using an sUAV to perform inspections is a challenging task due to constraints on the vehicle’s flight time, computational power, and data storage capabilities [3]. The approach presented in this article illustrates a method for utilizing multiple sUAVs to inspect a disaster region and merge the separate data into a single high-resolution 3D model. 
    more » « less
  5. We consider the problem of estimating the output of an unknown discrete-time linear time-invariant system and identifying a model of the system, where only measurements via a nonlinear dynamic sensor with known dynamics are available. The main result of this paper is a rank-constrained semidefinite program, which provides an equivalent characterization of this identification and estimation problem. This extends existing results from Wiener system identification to the more general case that the nonlinear block exhibits dynamic behavior, which is a commonly found scenario in practical applications. Notably, the result can be applied in the presence of nonlinear sensors with general non-invertible system dynamics. Two examples are used to illustrate the applicability of our approach. 
    more » « less