Advanced Aerial Mobility (AAM) platforms are poised to begin high-density operations in urban areas nationwide. This new category of aviation platforms spans a broad range of sizes, from small package delivery drones to passenger-carrying vehicles. Unlike traditional aircraft, AAM vehicles operate within the urban boundary layer, where large structures, such as buildings, interrupt the flow. This study examines the response of a package delivery drone, a general aviation aircraft, and a passenger-carrying urban air mobility aircraft through an urban wind field generated using Large Eddy Simulations (LES). Since it is burdensome to simulate flight dynamics in real-time using the full-order solution, reduced-order wind models are created. Comparing trajectories for each aircraft platform using full-order or reduced-order solutions reveals little difference; reduced-order wind representations appear sufficient to replicate trajectories as long as the spatiotemporal wind field is represented. However, examining control usage statistics and time histories creates a stark difference between the wind fields, especially for the lower wing-loading package delivery drone where control saturation was encountered. The control saturation occurrences were inconsistent across the full-order and reduced-order winds, advising caution when using reduced-order models for lightly wing-loaded aircraft. The results presented demonstrate the effectiveness of using a simulation environment to evaluate reduced-order models by directly comparing their trajectories and control activity metrics with the full-order model. This evaluation provides designers valuable insights for making informed decisions for disturbance rejection systems. Additionally, the results indicate that using Reynolds-averaged Navier–Stokes (RANS) solutions to represent urban wind fields is inappropriate. It was observed that the mean wind field trajectories fall outside the 95% confidence intervals, a finding consistent with the authors’ previous research.
more »
« less
Modeling advanced air mobility aircraft in data-driven reduced order realistic urban winds
Abstract The concept of Advanced Air Mobility involves utilizing cutting-edge transportation platforms to transport passengers and cargo efficiently over short distances in urban and suburban areas. However, using simplified atmospheric models for aircraft simulations can prove insufficient for modeling large disturbances impacting low-altitude flight regimes. Due to the complexities of operating in urban environments, realistic wind modeling is necessary to ensure trajectory planning and control design can maintain high levels of safety. In this study, we simulate the dynamic response of a representative advanced air mobility platform operating in wing-borne flight through an urban wind field generated using Large Eddy Simulations (LES) and a wind field created using reduced-order models based on full-order computational solutions. Our findings show that the longitudinal response of the aircraft was not greatly affected by the fidelity of the LES models or if the spatial variation was considered while evaluating the full-order wind model. This is encouraging as it indicates that the full LES generation of the wind field may not be necessary, which decreases the complexity and time needed in this analysis. Differences are present when comparing the lateral response, owing to the differences in the asymmetric loading of the planform in the full and reduced order models. These differences seen in the lateral responses are expected to increase for planforms with smaller wing loadings, which could pose challenges. Additionally, the response of the aircraft to the mean wind field, the temporal average of the full order model, was misrepresentative in the longitudinal response and greatly under-predicted control surface activity, particularly in the lateral response.
more »
« less
- Award ID(s):
- 1925147
- PAR ID:
- 10484040
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
View Video Presentation: https://doi.org/10.2514/6.2022-3218.vid The ability to accurately and rapidly assess unsteady interactional aerodynamics is a shortcoming and bottleneck in the design of various next-generation aerospace systems: from electric vertical takeoff and landing (eVTOL) aircraft to airborne wind energy (AWE) and wind farms. In this study, we present a meshless CFD framework based on the reformulated vortex particle method (rVPM) for the analysis of complex interactional aerodynamics. The rVPM is a large eddy simulation (LES) solving the Navier-Stokes equations in their vorticity form. It uses a meshless Lagrangian scheme, which not only avoids the hurdles of mesh generation, but it also conserves the vortical structure of wakes over long distances with minimal numerical dissipation, while being 100x faster than conventional mesh-based LES. Wings and rotating blades are introduced in the computational domain through actuator line and actuator surface models. Simulations are coupled with an aeroacoustics solver to predict tonal and broadband noise radiated by rotors. The framework, called FLOWUnsteady, is hereby released as an open-source code and extensively validated. Validation studies published in previous work by the authors are summarized, showcasing rotors across operating conditions with a rotor in hover, propellers, a wind turbine, and two side-by-side rotors in hover. Validation of rotor-wing interactions is presented simulating a tailplane with tip-mounted propellers and a blown wing with propellers mounted mid-span. The capabilities of the framework are showcased through the simulation of a tiltwing eVTOL vehicle and an AWE wind-harvesting aircraft, featuring rotors with variable RPM, variable pitch, tilting of wings and rotors, non-trivial flight paths, and complex aerodynamic interactions.more » « less
-
Abstract Existing motor vehicle pollutant measurement techniques, including those that employ ground-based and multirotor small uncrewed aircraft system (sUAS) methods, can accurately measure traffic-related air pollution (TRAP) concentrations at a single location. However, these techniques often lack the mobility to assess pollutant trends across a large horizontal area. Fixed-wing sUAS represents an alternative instrument platform compared to ground-based systems and multirotor sUAS, as fixed-wing sUASs are able to carry air pollutant monitor payloads, have extended endurance, and offer expansive three-dimensional ranges across a field site. To demonstrate the utility of fixed-wing sUAS for urban TRAP assessment, we conducted two flights using a Super Robust Autonomous Aerial Vehicle–Endurant Nimble (RAAVEN) sUAS [University of Colorado (CU) Boulder] at a large field site adjacent to a major highway in Erie, Colorado. Concentrations of solid particulate matter (PM10) and gas-phase (carbon monoxide) pollutants displayed decay as a function of altitude. During the morning flight, PM10concentrations decreased from 19.0μg m−3at ground level to a minimum concentration of 14.3μg m−3at 90 m above ground level. During the afternoon flight, concentrations of PM10displayed minimal vertical stratification, ranging from 8.9 at ground level to 10.0μg m−3at 45 m above ground level. Similarly, pollutants displayed decreasing concentrations as the horizontal distance from the roadway increased. Concentrations of TRAP may be significantly elevated in the area both above and beyond roadways, which contribute to additional pollutant exposure from on-road pollution sources. This study demonstrated that the general behavior of TRAP in near-road environments and that the use of fixed-wing sUAS are viable option for urban air quality measurements. Significance StatementThis study represents one of the first uses of a fixed-wing small uncrewed aircraft system (sUAS) to assess near-roadside concentrations of traffic-related air pollution (TRAP) in urbanized areas. We found that local meteorology, including local wind and solar radiation, had a substantial influence on the concentrations of common air pollutants, including particulate matter, black carbon, carbon monoxide, and carbon dioxide. Furthermore, we found large-scale spatiotemporal variation in pollutant concentrations as a function of the vertical and horizontal distance from the highway, indicating that diminished spatial variation employed in multirotor sUAS studies may not be sufficient to fully assess TRAP in roadside environments.more » « less
-
Abstract Uncrewed aerial vehicles are integral to a smart city framework, but the dynamic environments above and within urban settings are dangerous for autonomous flight. Wind gusts caused by the uneven landscape jeopardize safe and effective aircraft operation. Birds rapidly reject gusts by changing their wing shape, but current gust alleviation methods for aircraft still use discrete control surfaces. Additionally, modern gust alleviation controllers challenge small uncrewed aerial vehicle power constraints by relying on extensive sensing networks and computationally expensive modeling. Here we show end-to-end deep reinforcement learning forgoing state inference to efficiently alleviate gusts on a smart material camber-morphing wing. In a series of wind tunnel gust experiments at the University of Michigan, trained controllers reduced gust impact by 84% from on-board pressure signals. Notably, gust alleviation using signals from only three pressure taps was statistically indistinguishable from using six pressure tap signals. By efficiently rejecting environmental perturbations, reduced-sensor fly-by-feel controllers open the door to small uncrewed aerial vehicle missions in cities.more » « less
-
This paper presents an approach for generating linear time invariant state-space models of a small Unmanned Air System. An instrumentation system using the robot operating system with commercial-off-the-shelf components is implemented to record flight data and inject auto- mated excitation signals. Offline system identification is conducted using the Observer/Kalman Identification algorithm to produce a discrete-time linear time invariant state-space model, which is then converted to a continuous time-model for analysis. Challenges concerning data collection and inverted V-Tail modelling are discussed, and solutions are presented. Longitudiunal, lateral/directional and combined longitudinal lateral/directional models of the test vehicle are generated using both manual and automated excitations, and are presented and compared. The generated longitudinal and lateral/directional results are compared to results for a small Unmanned Air System with a standard empennage. Flight test results presented in the paper show decent matching between the decoupled longitudinal and lateral/directional model and the combined longitudinal/lateral directional model.more » « less
An official website of the United States government
