Density functional theory (DFT) prescribes the existence of a ground-state configuration at 0 K for a given system. However, the ground-state configuration alone is insufficient to describe a phase at finite temperatures as symmetry-breaking non-ground-state configurations are excited statistically at temperatures above 0 K. Our multiscale entropy approach, Zentropy, postulates that the entropy of a phase is composed of the sum of the entropy of each configuration weighted by its probability plus the configurational entropy among all configurations. Consequently, the partition function of each configuration in statistical mechanics needs to be evaluated by its free energy rather than total energy. The combination of the ground-state and symmetry-breaking non-ground-state configurations represents the building blocks of materials and can be used to quantitatively predict free energy of individual phases with the free energy of each configuration predicted from DFT as well as all properties derived from free energy of individual phases.
more »
« less
Zentropy Theory for Positive and Negative Thermal Expansion
It has been observed in both natural and man-made materials that volume sometimes decreases with increasing temperature. Though mechanistic understanding has been gained for some individual materials, a general answer to the question “Why does volume sometimes decrease with the increase of temperature?” remains lacking. Based on the thermodynamic relation that the derivative of volume with respect to temperature, i.e., thermal expansion, is equal to the negative derivative of entropy with respect to pressure, we developed a general theory in terms of multiscale entropy to understand and predict the change of volume as a function of temperature, which is termed as zentropy theory in the present work. It is shown that a phase at high temperatures is a statistical representation of the ground-state stable and multiple nonground-state metastable configurations. It is demonstrated that when the volumes of the nonground-state configurations with high probabilities are smaller than that of the ground-state configuration, the volume of the phase may decrease with the increase of temperature in certain ranges of temperature-pressure combinations, depicting the negative divergency of thermal expansion at the critical point. As examples, positive and negative divergencies of thermal expansion are predicted at the critical points of Ce and Fe3Pt, respectively, along with the temperature and pressure ranges for abnormally positive and negative thermal expansions. The authors believe that the zentropy theory is applicable to predict anomalies of other physical properties of phases because the change of entropy drives the responses of a system to external stimuli.
more »
« less
- Award ID(s):
- 2050069
- PAR ID:
- 10318667
- Date Published:
- Journal Name:
- Journal of Phase Equilibria and Diffusion
- ISSN:
- 1547-7037
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Thermoelastic behavior of transition metal boride Os2B3 was studied under quasi-hydrostatic and isothermal conditions in a Paris-Edinburgh cell to 5.4 GPa and 1273 K. In-situ Energy Dispersive X-ray diffraction was used to determine interplanar spacings of the hexagonal crystal structure and thus the volume and axial compression. P-V-T data were fitted to a 3rd Order Birch-Murnaghan equation of state with a temperature modification to determine thermal elastic constants. The bulk modulus was shown to be K0 = 402 ± 21 GPa when the first pressure derivative was held to K0’ = 4.0 from the room temperature P-V curve. Under a quadratic fit α=α_0+α_1 T-α_2 T^(-2), the thermal expansion coefficients were determined to be α_0=1.862×10^(-5) K-1, α_1=0.841×10^(-9) K-2, and α_2=-0.525 K. Density functional theory (DFT) with the quasi-harmonic approximation (QHA) were further employed to study Os2B3, including its P-V-T curves, phonon spectra, bulk modulus, specific heat, thermal expansion, and the Grüneisen parameter. A good agreement between the first-principle theory and experimental observations was achieved, highlighting the success of the Armiento-Mattsson 2005 generalized gradient approximation functional employed in this study and QHA for describing thermodynamic properties of Os2B3.more » « less
-
Abstract The hydrostatic equilibrium addresses the approximate balance between the positive force of the vertical pressure gradient and the negative gravity force and has been widely assumed for atmospheric applications. The hydrostatic imbalance of the mean atmospheric state for the acceleration of vertical motions in the vertical momentum balance is investigated using tower, the global positioning system radiosonde, and Doppler lidar and radar observations throughout the diurnally varying atmospheric boundary layer (ABL) under clear-sky conditions. Because of the negligibly small mean vertical velocity, the acceleration of vertical motions is dominated by vertical variations of vertical turbulent velocity variances. The imbalance is found to be mainly due to the vertical turbulent transport of changing air density as a result of thermal expansion/contraction in response to air temperature changes following surface temperature changes. In contrast, any pressure change associated with air temperature changes is small, and the positive vertical pressure-gradient force is strongly influenced by its background value. The vertical variation of the turbulent velocity variance from its vertical increase in the lower convective boundary layer (CBL) to its vertical decrease in the upper CBL is observed to be associated with the sign change of the imbalance from positive to negative due to the vertical decrease of the positive vertical pressure-gradient force and the relative increase of the negative gravity force as a result of the decreasing upward transport of the low-density air. The imbalance is reduced significantly at night but does not steadily approach zero. Understanding the development of hydrostatic imbalance has important implications for understanding large-scale atmosphere, especially for cloud development. Significance StatementIt is well known that the hydrostatic imbalance between the positive pressure-gradient force due to the vertical decrease of atmospheric pressure and the negative gravity forces in the vertical momentum balance equation has important impacts on the vertical acceleration of atmospheric vertical motions. Vertical motions for mass, momentum, and energy transfers contribute significantly to changing atmospheric dynamics and thermodynamics. This study investigates the often-assumed hydrostatic equilibrium and investigate how the hydrostatic imbalance is developed using field observations in the atmospheric boundary layer under clear-sky conditions. The results reveal that hydrostatic imbalance can develop from the large-eddy turbulent transfer of changing air density in response to the surface diabatic heating/cooling. The overwhelming turbulence in response to large-scale thermal forcing and mechanical work of the vast Earth surface contributes to the hydrostatic imbalance on large spatial and temporal scales in numerical weather forecast and climate models.more » « less
-
The anomalously low thermal expansion of Fe-Ni Invar has long been associated with magnetism, but to date, the microscopic underpinnings of Invar behavior have eluded both theory and experiment. Here, we present nuclear resonant X-ray scattering measurements of the phonon and magnetic entropy under pressure. By applying a thermodynamic Maxwell relation to these data, we obtain the separate phonon and magnetic contributions to thermal expansion. We find that the Invar behavior stems from a competition between phonons and spins. In particular, the phonon contribution to thermal expansion cancels the magnetic contribution over the 0 - 3 GPa pressure range of Invar behavior. At pressures above 3 GPa the cancellation is lost, but our analysis reproduces the positive thermal expansion measured separately by synchrotron X-ray diffractometry. Ab initio calculations informed by experimental data show that spin-phonon interactions improve the accuracy of this cancellation over the range of Invar behavior. Spin-phonon interactions also explain how different phonon modes have different energy shifts with pressure.more » « less
-
We report the P-V-T equation of state measurements of B4C to 50GPa and approximately 2500K in laser-heated diamond anvil cells. We obtain an ambient temperature, third-order Birch–Murnaghan fit to the P-V data that yields a bulk modulus K0 of 221(2) GPa and derivative, (dK/dP)0 of 3.3(1). These were used in fits with both a Mie–Grüneisen– Debye model and a temperature-dependent, Birch– Murnaghan equation of state that includes thermal pressure estimated by thermal expansion (α) and a temperature-dependent bulk modulus (dK0/dT). The ambient pressure thermal expansion coefficient (α0+α1T), Grüneisen γ (V)=γ 0(V/V0)q and volumedependent Debye temperature, were used as input parameters for these fits and found to be sufficient to describe the data in the whole P-T range of this study.more » « less
An official website of the United States government

