skip to main content


Title: Practical Online Monitoring of Ionic Liquid Fiber Welding Solvent
Ionic liquids (ILs) are becoming important solvents in commerce, but monitoring their purity and performance in industrial applications presents new challenges. Fiber welding technology utilizes ILs to mold and shape natural fibers (cotton, hemp, flax, silk, and wool) into morphologies that are typically attained only using synthetic, petroleum-based non-biodegradable plastics. The result is an atom-efficient process that up-converts fibrous substrates to value-added products and materials. A key aspect of bringing this and other IL-enabled technologies to market relies on efficient monitoring and recycling of IL-based solvents. Implementing online IL quality monitoring enhances the unit economics of these processes. Here, we characterize and report conductivity measurements, refractometry, and ATR–FTIR spectroscopy techniques for online IL monitoring during an industrial fiber welding process. The online analysis enables more efficient recycling of the IL solvent, increasing the process efficiency and product quality.  more » « less
Award ID(s):
1651381
NSF-PAR ID:
10318691
Author(s) / Creator(s):
Date Published:
Journal Name:
ACS omega
Volume:
6
Issue:
34
ISSN:
2470-1343
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It has been recently discovered that the thermosetting matrix of engineering composites can be fully depolymerized in organic solvents through covalent bond exchange reactions (BERs) between the polymer network and solvent molecules. This breakthrough enables the eco-friendly and sustainable recovery of valuable fiber reinforcements using mild processing conditions. However, current investigations have been limited to proof-of-concept experimental demonstrations, leaving unanswered questions regarding the influence of temperature, solvent choice, and fiber arrangement on composite depolymerization performance. These factors are crucial for the commercialization and widespread industrial implementation of this technique. To address this significant knowledge gap, this study aims to establish the relationship between composite depolymerization speed and various material and processing conditions. A multiscale diffusion-reaction computational model is defined based on the finite element method, which links the microscale BER rate to the continuum-level composite depolymerization kinetics. Specifically, it reveals how the processing temperature, solvent diffusivity, fiber content, and fiber arrangement affect the overall composite depolymerization speed. The study enhances our understanding of the underlying mechanisms of composite recycling using organic solvents. As a result, it provides valuable insights for industrial stakeholders, allowing them to optimize depolymerization conditions, make informed material selections, and develop suitable business models for waste management. 
    more » « less
  2. Computational simulations of ionic liquid solutions have become a useful tool to investigate various physical, chemical and catalytic properties of systems involving these solvents. Classical molecular dynamics and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations of IL systems have provided significant insights at the atomic level. Here, we present a review of the development and application of the multipolar and polarizable force field AMOEBA for ionic liquid systems, termed AMOEBA–IL. The parametrization approach for AMOEBA–IL relies on the reproduction of total quantum mechanical (QM) intermolecular interaction energies and QM energy decomposition analysis. This approach has been used to develop parameters for imidazolium– and pyrrolidinium–based ILs coupled with various inorganic anions. AMOEBA–IL has been used to investigate and predict the properties of a variety of systems including neat ILs and IL mixtures, water exchange reactions on lanthanide ions in IL mixtures, IL–based liquid–liquid extraction, and effects of ILs on an aniline protection reaction. 
    more » « less
  3. Antonios C. Kokossis ; Michael C. Georgiadis ; Efstratios Pistikopoulos (Ed.)
    Efficient and sustainable chemical recycling pathways for plastics are vital for addressing the negative environmental impacts associated with their end-of-life management. Mechanochemical depolymerization in ball mill reactors is a new promising route to achieve solid-state conversion of polymers to monomers, without the need for additional solvents. Physics-based models that accurately describe the reactor system are necessary for process design, scaling up, and reducing energy consumption. Motivated by this, a Discrete Element Method (DEM) model is developed to investigate the ball milling process at laboratory and industrial scales. The lab-scale model is calibrated and validated with data extracted from videos using computer vision tools. Finally, scaled-up ball mill designs capable of depolymerizing varying feeds of PET waste were simulated, and their capital and operating costs are estimated to assess the economic potential of this route. 
    more » « less
  4. Abstract

    The remarkable surge in energy demand has compelled the quest for high‐energy‐density battery systems. The Li–O2battery (LOB) and Li–air battery (LAB), owing to their extremely high theoretical energy density, have attracted extensive research in the past two decades. The commercial development of LOB is hampered due to the numerous challenges its components present. Ionic liquids (ILs) are considered potential electrolyte solvents of LOBs and LABs due to their excellent electrochemical stability, thermal stability, non‐flammability, low flammability, and O2solubility. In addition to electrolyte solvents, ILs also have other applications in LOB and LAB systems. This review reports the progress of IL‐based LOBs and LABs over the years since treported for the first time in 2005. The impact of the physiochemical properties of ILs on the performance of LOB and LAB at various operating conditions is thoroughly discussed. The various methodologies are also summarized that are employed to tune ILs’ physiochemical properties to render them more favorable for rechargeable lithium batteries. Tunable properties of ILs create the possibility of designing cost‐effective batteries with excellent safety, high energy density and high power density, and long‐term stability.

     
    more » « less
  5. Yamashita, Y. ; Kano, M. (Ed.)
    To help slow climate change, international efforts have begun to mandate the phase-out of high global warming potential (GWP) hydrofluorocarbons (HFCs) throughout the next decade. Most HFC refrigerant mixtures form azeotropes, complicating separation into the individual HFC components for reuse and recycling. In this paper, we design and analyze ionic liquid (IL)-enabled extractive distillation processes for ternary HFC separations using AspenPlus. Specifically, we design processes to separate three commercially important HFC refrigerant mixtures (R-404A, R-407C, and R-410A) into high purity HFC streams. We find added value of the separation of R-410A of 0.58 $/kg with current market conditions, specifically laboratory-scale IL manufacturing costs (1000 $/kg of IL) and a low-price differential of 1.00 $/kg between raw materials and separated products. If the IL purchase cost decreases 90 % due to mass production, consistent with prior adoption of ILs for niche separations, the added value increases to 0.76 $/kg. Moreover, under proposed reductions in HFC manufacturing, the price of recovered products may dramatically increase in the future. For example, if the price of R-32 increases by 50 %, the added value would reach 3.08 $/kg. In summary, we find IL-based recycling of HFCs is economically viable based on simple technoeconomic analysis. Moreover, this paper reports capital and operation cost curves and a general analysis framework to analyze evolving market conditions. 
    more » « less