Computational simulations of ionic liquid solutions have become a useful tool to investigate various physical, chemical and catalytic properties of systems involving these solvents. Classical molecular dynamics and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations of IL systems have provided significant insights at the atomic level. Here, we present a review of the development and application of the multipolar and polarizable force field AMOEBA for ionic liquid systems, termed AMOEBA–IL. The parametrization approach for AMOEBA–IL relies on the reproduction of total quantum mechanical (QM) intermolecular interaction energies and QM energy decomposition analysis. This approach has been used to develop parameters formore »
This content will become publicly available on August 18, 2022
Practical Online Monitoring of Ionic Liquid Fiber Welding Solvent
Ionic liquids (ILs) are becoming important solvents in commerce, but monitoring their purity and performance in industrial applications presents new challenges. Fiber welding technology utilizes ILs to mold and shape natural fibers (cotton, hemp, flax, silk, and wool) into morphologies that are typically attained only using synthetic, petroleum-based non-biodegradable plastics. The result is an atom-efficient process that up-converts fibrous substrates to value-added products and materials. A key aspect of bringing this and other IL-enabled technologies to market relies on efficient monitoring and recycling of IL-based solvents. Implementing online IL quality monitoring enhances the unit economics of these processes. Here, we characterize and report conductivity measurements, refractometry, and ATR–FTIR spectroscopy techniques for online IL monitoring during an industrial fiber welding process. The online analysis enables more efficient recycling of the IL solvent, increasing the process efficiency and product quality.
- Award ID(s):
- 1651381
- Publication Date:
- NSF-PAR ID:
- 10318691
- Journal Name:
- ACS omega
- Volume:
- 6
- Issue:
- 34
- ISSN:
- 2470-1343
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The theoretical promise of ionic liquids (ILs) as ‘green’ designer solvents that can be tuned to facilitate key steps of lignocellulosic biomass processing has not been fully realized due to the sheer number of possible cation–anion combinations and concerns about toxicity of this class of chemicals. Although computational methods are being applied to identify ILs with specific functions, such as dissolution of cellulose, they are not used to iteratively design new ionic liquids with the goal of simultaneously optimizing multiple criteria, such as performance and environmental safety. Here we describe a tiered computational approach to develop new ILs based onmore »
-
Online repository: https://speautomotive.com/acce-conference/2021-acce-papers-and-program-guides/ and also on: arXiv:2204.00909. Abstract: While welding of thermoplastic composites (TPCs) is a promising rivetless method to reduce weight, higher confidence in joints’ structural integrity and failure prediction must be achieved for widespread use in industry. In this work, we present an innovative study on damage detection for ultrasonically welded TPC joints with multi-walled carbon nanotubes (MWCNTs) and embedded buckypaper films. MWCNTs show promise for structural health monitoring (SHM) of composite joints, assembled by adhesive bonding or fusion bonding, through electrical resistance changes. This study focuses on investigating multifunctional films and their suitability for ultrasonic welding (USW)more »
-
Isothermal membrane-based air dehumidification (IMAD) is much more energy-efficient and economical than traditional air-dehumidification technologies. There are, however, no practical IMAD process technologies currently available mainly due to limitations of current membranes. Ionic liquids (ILs) are a promising air-dehumidification membrane material. Current supported IL membranes suffer from poor stability, limiting their performances. Herein, we propose new stable IL membranes, encapsulated IL membranes (EILMs) by encapsulating 1-butyl-3-methylimidazolium bromide ([C 4 MIM][Br]) into ultrathin polycrystalline UiO-66-NH 2 metal–organic framework membranes via a ship-in-a-bottle method. The stability of IL membranes is significantly enhanced due to the IL entrapped in the pore cages ofmore »
-
Embedded fiber Bragg grating (FBG) sensors are attractive for in-situ structural monitoring, especially in fiber reinforced composites. Their implementation in metallic structures is hindered by the thermal limit of the protective coating, typically a polymer material. The purpose of this study is to demonstrate the embedding of FBG sensors into metals with the ultimate objective of using FBG sensors for structural health monitoring of metallic structures. To that end, ultrasonic additive manufacturing (UAM) is utilized. UAM is a solid-state manufacturing process based on ultrasonic metal welding that allows for layered addition of metallic foils without melting. Embedding FBGs through UAMmore »