skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A global compilation of U-series-dated fossil coral sea-level indicators for the Last Interglacial period (Marine Isotope Stage 5e)
Abstract. This dataset is a comprehensive, global compilation ofpublished uranium–thorium (U-series) dated fossil coral records from∼ 150 000–110 000 years ago, as well as associatedelevation measurements and sample metadata. In total, 1312 U-seriesmeasurements from 994 unique coral colonies are included in the currentversion of the dataset, all of which have been normalized and recalculatedusing the same decay constant values. Of these measurements, 444 analysesfrom 330 colonies are relative sea-level indicators, whereas 15 analysesfrom 13 colonies are marine limiting. Two example geochemical screeningcriteria have been included to assist users with identifying altered fossilcorals that display geochemical open-system behavior, and the originallypublished interpretations on age quality have been preserved within thesample metadata. Additionally, a clear distinction has been made betweencoral colonies that are in primary growth position, which may be used forrelative sea-level reconstructions, and colonies that have beentransported/reworked, which cannot be used for these purposes. Futureresearch efforts involving fossil coral sea-level reconstructions shouldemphasize an “integrated” and holistic approach that combines carefulassessment of U-series age quality with high-precision surveying techniquesand detailed facies/stratigraphic observations. This database is availableat https://doi.org/10.5281/zenodo.4309796 (Chutcharavan andDutton, 2020).  more » « less
Award ID(s):
2041325
PAR ID:
10318713
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Earth System Science Data
Volume:
13
Issue:
7
ISSN:
1866-3516
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY Fossil corals are commonly used to reconstruct Last Interglacial (∼125 ka, LIG) sea level. Sea level reconstructions assume the water depth at which the coral lived, called the ‘relative water depth’. However, relative water depth varies in time and space due to coral reef growth in response to relative sea level (RSL) changes. RSL changes can also erode coral reefs, exposing older reef surfaces with different relative water depths. We use a simplified numerical model of coral evolution to investigate how sea level history systematically influences the preservation of corals in the Bahamas and western Australia, regions which house >100 LIG coral fossils. We construct global ice histories spanning the uncertainty of LIG global mean sea level (GMSL) and predict RSL with a glacial isostatic adjustment model. We then simulate coral evolution since 132 ka. We show that preserved elevations and relative water depths of modelled LIG corals are sensitive to the magnitude, timing and number of GMSL highstand(s). In our simulations, the influence of coral growth and erosion (i.e. the ‘growth effect’) can have an impact on RSL reconstructions that is comparable to glacial isostatic adjustment. Thus, without explicitly accounting for the growth effect, additional uncertainty is introduced into sea level reconstructions. Our results suggest the growth effect is most pronounced in western Australia due to Holocene erosion, but also plays a role in the Bahamas, where LIG RSL rose rapidly due to the collapsing peripheral bulge associated with Laurentide Ice Sheet retreat. Despite the coral model's simplicity, our study highlights the utility of process-based RSL reconstructions. 
    more » « less
  2. Abstract The geochemistry of tropical coral skeletons is widely used in paleoclimate reconstructions. However, sub‐aerially exposed corals may be affected by diagenesis, altering the aragonite skeleton through partial dissolution, or infilling of secondary minerals like calcite. We analyzed the impact of intra‐skeletal calcite on the geochemistry (δ18O, Sr/Ca, Mg/Ca, Li/Mg, Li/Ca, U/Ca, B/Ca, Ba/Ca, and Mn/Ca) of a sub‐aerially exposedPoritessp. coral. Each micro‐milled coral sample was split into two aliquots for geochemistry and X‐ray diffraction (XRD) analysis to quantify the direct impact of calcite on geochemistry. We modified the sample loading technique for XRD to detect low calcite levels (1%–2%; total uncertainty = 0.33%, 2σ) in small samples (∼7.5 mg). Calcite content ranged from 0% to 12.5%, with higher percentages coinciding with larger geochemical offsets. Sr/Ca, Li/Mg, Li/Ca, and δ18O‐derived sea‐surface temperature (SST) anomalies per 1% calcite were +0.43°C, +0.24°C, +0.11°C, and +0.008°C, respectively. A 3.6% calcite produces a Sr/Ca‐SST signal commensurate with local SST seasonality (∼1.5°C), which we propose as the cut‐off level for screening calcite diagenesis in paleo‐temperature reconstructions. Inclusion of intra‐skeletal calcite decreases B/Ca, Ba/Ca, and U/Ca values, and increases Mg/Ca values, and can therefore impact reconstructions of paleoclimate and the carbonate chemistry of the semi‐isolated calcifying fluid in corals. This study emphasizes the importance of quantifying fine‐scale calcite diagenesis to identify coral preservation levels and assure robust paleoclimate reconstructions. 
    more » « less
  3. Our understanding of the mechanisms controlling eustatic sea level and global climate changes has been hampered by a lack of appropriate fossil coral records over the last 500 ky, particularly into and out of the glacial periods. This problem was addressed by International Ocean Discovery Program Expedition 389, which drilled a unique succession of Hawaiian drowned coral reefs now at 110–1300 meters below sea level (mbsl). The four objectives are to investigate (1) the timing, rate, and amplitude of sea level variability to examine cryosphere and geophysical processes, including the assessment of abrupt sea level change events; (2) the processes that determine changes in mean and high-frequency (seasonal–interannual) climate variability from times with different boundary conditions (e.g., ice sheet size, pCO2, and solar forcing); (3) the response of coral reef systems to abrupt sea level and climate changes; and (4) the variations through space and time of the subsidence and the volcanic evolution of the island. To achieve these objectives, 35 holes at 16 sites in water depths ranging 131.9–1241.8 mbsl were drilled during the expedition. A total of 425 m of core was recovered, comprising reef (83%) and volcanic (17%) material. Average core recoveries were 66%, with recoveries >90% in numerous intervals characterized by very well preserved coralgal and microbialite frameworks. Some science-critical shallow sites were not drilled due to a failure to secure permits to operate in Hawaiian state waters. Furthermore, apart from one site, the target penetration depths were not achieved. Preliminary radiometric dates indicate that the recovered reef deposits are from 488 to 13 ka in age. The Onshore Science Party took place in February 2024. Cores were computed tomography (CT) scanned and then opened and hyperspectral scanned and described. Standard measurements were made, and samples were taken for postcruise research. Preliminary assessment of the age and quality of the reef and volcanic cores suggest that many of the expedition objectives will be met. 
    more » « less
  4. Our understanding of the mechanisms controlling eustatic sea level and global climate changes has been hampered by a lack of appropriate fossil coral records over the last 500 ky, particularly into and out of the glacial periods. This problem was addressed by International Ocean Discovery Program Expedition 389, which drilled a unique succession of Hawaiian drowned coral reefs now at 110–1300 meters below sea level (mbsl). The four objectives are to investigate (1) the timing, rate, and amplitude of sea level variability to examine cryosphere and geophysical processes, including the assessment of abrupt sea level change events; (2) the processes that determine changes in mean and high-frequency (seasonal–interannual) climate variability from times with different boundary conditions (e.g., ice sheet size, pCO2, and solar forcing); (3) the response of coral reef systems to abrupt sea level and climate changes; and (4) the variations through space and time of the subsidence and the volcanic evolution of the island. To achieve these objectives, 35 holes at 16 sites in water depths ranging 131.9–1241.8 mbsl were drilled during the expedition. A total of 425 m of core was recovered, comprising reef (83%) and volcanic (17%) material. Average core recoveries were 66%, with recoveries >90% in numerous intervals characterized by very well preserved coralgal and microbialite frameworks. Some science-critical shallow sites were not drilled due to a failure to secure permits to operate in Hawaiian state waters. Furthermore, apart from one site, the target penetration depths were not achieved. Preliminary radiometric dates indicate that the recovered reef deposits are from 488 to 13 ka in age. The Onshore Science Party took place in February 2024. Cores were computed tomography (CT) scanned and then opened and hyperspectral scanned and described. Standard measurements were made, and samples were taken for postcruise research. Preliminary assessment of the age and quality of the reef and volcanic cores suggest that many of the expedition objectives will be met. 
    more » « less
  5. Our understanding of the mechanisms controlling eustatic sea level and global climate changes has been hampered by a lack of appropriate fossil coral records over the last 500 ky, particularly into and out of the glacial periods. This problem was addressed by International Ocean Discovery Program Expedition 389 by drilling a unique succession of Hawaiian drowned coral reefs now at 110–1300 meters below sea level (mbsl). The four objectives are to investigate (1) the timing, rate, and amplitude of sea level variability to examine cryosphere and geophysical processes, including the assessment of abrupt sea level change events; (2) the processes that determine changes in mean and high-frequency (seasonal–interannual) climate variability from times with different boundary conditions (e.g., ice sheet size, pCO2, and solar forcing); (3) the response of coral reef systems to abrupt sea level and climate changes; and (4) the variation through space and time of the subsidence and the volcanic evolution of the island. To achieve these objectives, 35 holes at 16 sites ranging 131.9–1241.8 mbsl were drilled during the expedition. A total of 425 m of core was recovered, comprising reef (83%) and volcanic (17%) material. Average core recoveries were 66%, with numerous intervals characterized by very well preserved mixtures of coralgal and microbialite frameworks with recoveries >90%. Some science-critical shallow sites were not drilled due to a failure to secure permits to operate in Hawaiian state waters. Furthermore, apart from one site the target penetration depths were not achieved. Preliminary radiometric dates indicate that the recovered reef deposits are from 488 to 13 ka in age. The Onshore Science Party took place in February 2024. Cores were CT and hyperspectral scanned and described. Standard measurements were made, and samples were taken for postcruise research. Preliminary assessment of the age and quality of the reef and basalt cores suggest that many of the expedition objectives will be met. 
    more » « less