Glacial isostatic adjustment (GIA) simulations using earth models that vary viscoelastic structure with depth alone cannot simultaneously fit geographic trends in the elevation of marine isotope stage (MIS) 5a relative sea level (RSL) indicators across continental North America and the Caribbean and yield conflicting estimates of global mean sea level (GMSL). We present simulations with a GIA model that incorporates three-dimensional (3-D) variation in North American viscoelastic earth structure constructed by combining high-resolution seismic tomographic imaging with a new method for mapping this imaging into lateral variations in lithospheric thickness and mantle viscosity. We pair this earth model with a global ice history based on updated constraints on ice volume and geometry. The GIA prediction provides the first simultaneous reconciliation of MIS 5a North American and Caribbean RSL highstands and strengthens arguments that MIS 5a peak GMSL reached values close to that of the Last Interglacial. This result highlights the necessity of incorporating realistic 3-D earth structure into GIA predictions with continent-scale RSL data sets.
more »
« less
Imprint of relative sea level histories on Last Interglacial coral preservation
SUMMARY Fossil corals are commonly used to reconstruct Last Interglacial (∼125 ka, LIG) sea level. Sea level reconstructions assume the water depth at which the coral lived, called the ‘relative water depth’. However, relative water depth varies in time and space due to coral reef growth in response to relative sea level (RSL) changes. RSL changes can also erode coral reefs, exposing older reef surfaces with different relative water depths. We use a simplified numerical model of coral evolution to investigate how sea level history systematically influences the preservation of corals in the Bahamas and western Australia, regions which house >100 LIG coral fossils. We construct global ice histories spanning the uncertainty of LIG global mean sea level (GMSL) and predict RSL with a glacial isostatic adjustment model. We then simulate coral evolution since 132 ka. We show that preserved elevations and relative water depths of modelled LIG corals are sensitive to the magnitude, timing and number of GMSL highstand(s). In our simulations, the influence of coral growth and erosion (i.e. the ‘growth effect’) can have an impact on RSL reconstructions that is comparable to glacial isostatic adjustment. Thus, without explicitly accounting for the growth effect, additional uncertainty is introduced into sea level reconstructions. Our results suggest the growth effect is most pronounced in western Australia due to Holocene erosion, but also plays a role in the Bahamas, where LIG RSL rose rapidly due to the collapsing peripheral bulge associated with Laurentide Ice Sheet retreat. Despite the coral model's simplicity, our study highlights the utility of process-based RSL reconstructions.
more »
« less
- Award ID(s):
- 1841888
- PAR ID:
- 10485597
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Geophysical Journal International
- Volume:
- 236
- Issue:
- 3
- ISSN:
- 0956-540X
- Format(s):
- Medium: X Size: p. 1360-1372
- Size(s):
- p. 1360-1372
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Global mean sea-level (GMSL) change can shed light on how the Earth system responds to warming. Glaciological evidence indicates that Earth’s ice sheets retreated inland of early industrial (1850 CE) extents during the Holocene (11.7-0 ka), yet previous work suggests that Holocene GMSL never surpassed early industrial levels. We merge sea-level data with a glacial isostatic adjustment model ensemble and reconstructions of postglacial thermosteric sea-level and mountain glacier evolution to estimate Holocene GMSL and ice volume. We show it is likely (probabilityP= 0.75) GMSL exceeded early industrial levels after 7.5ka, reaching 0.24 m (−3.3 to 1.0 m, 90% credible interval) above present by 3.2ka; Antarctica was likely (P = 0.78) smaller than present after 7ka; GMSL rise by 2150 will very likely (P = 0.9) be the fastest in the last 5000 years; and by 2060, GMSL will as likely than not (P = 0.5) be the highest in 115,000 years.more » « less
-
During the last interglacial (LIG) period, global mean sea level (GMSL) was higher than at present, likely driven by greater high-latitude insolation. Past sea-level estimates require elevation measurements and age determination of marine sediments that formed at or near sea level, and those elevations must be corrected for glacial isostatic adjustment (GIA). However, this GIA correction is subject to uncertainties in the GIA model inputs, namely, Earth’s rheology and past ice history, which reduces precision and accuracy in estimates of past GMSL. To better constrain the GIA process, we compare our data and existing LIG sea-level data across the Bahamian archipelago with a suite of 576 GIA model predictions. We calculated weights for each GIA model based on how well the model fits spatial trends in the regional sea-level data and then used the weighted GIA corrections to revise estimates of GMSL during the LIG. During the LIG, we find a 95% probability that global sea level peaked at least 1.2 m higher than today, and it is very unlikely (5% probability) to have exceeded 5.3 m. Estimates increase by up to 30% (decrease by up to 20%) for portions of melt that originate from the Greenland ice sheet (West Antarctic ice sheet). Altogether, this work suggests that LIG GMSL may be lower than previously assumed.more » « less
-
Understanding sea level during the peak of the Last Interglacial (125,000 yrs ago) is important for assessing future ice-sheet dynamics in response to climate change. The coasts and continental shelves of northeastern Australia (Queensland) preserve an extensive Last Interglacial record in the facies of coastal strandplains onland and fossil reefs offshore. However, there is a discrepancy, amounting to tens of meters, in the elevation of sea-level indicators between offshore and onshore sites. Here, we assess the influence of geophysical processes that may have changed the elevation of these sea-level indicators. We modeled sea-level change due to dynamic topography, glacial isostatic adjustment, and isostatic adjustment due to coral reef loading. We find that these processes caused relative sea-level changes on the order of, respectively, 10 m, 5 m, and 0.3 m. Of these geophysical processes, the dynamic topography predictions most closely match the tilting observed between onshore and offshore sea-level markers.more » « less
-
Polar temperatures during the Last Interglacial [LIG; ~129 to 116 thousand years (ka)] were warmer than today, making this time period an important testing ground to better understand how ice sheets respond to warming. However, it remains debated how much and when the Antarctic and Greenland ice sheets changed during this period. Here, we present a combination of new and existing absolutely dated LIG sea-level observations from Britain, France, and Denmark. Because of glacial isostatic adjustment (GIA), the LIG Greenland ice melt contribution to sea-level change in this region is small, which allows us to constrain Antarctic ice change. We find that the Antarctic contribution to LIG global mean sea level peaked early in the interglacial (before 126 ka), with a maximum contribution of 5.7 m (50th percentile, 3.6 to 8.7 m central 68% probability) before declining. Our results support an asynchronous melt history over the LIG, with an early Antarctic contribution followed by later Greenland Ice Sheet mass loss.more » « less
An official website of the United States government
