skip to main content


Title: Improving Column Generation for Vehicle Routing Problems via Random Coloring and Parallelization
We consider a variant of the vehicle routing problem (VRP) where each customer has a unit demand and the goal is to minimize the total cost of routing a fleet of capacitated vehicles from one or multiple depots to visit all customers. We propose two parallel algorithms to efficiently solve the column-generation-based linear-programming relaxation for this VRP. Specifically, we focus on algorithms for the “pricing problem,” which corresponds to the resource-constrained elementary shortest path problem. The first algorithm extends the pulse algorithm for which we derive a new bounding scheme on the maximum load of any route. The second algorithm is based on random coloring from parameterized complexity which can be also combined with other techniques in the literature for improving VRPs, including cutting planes and column enumeration. We conduct numerical studies using VRP benchmarks (with 50–957 nodes) and instances of a medical home care delivery problem using census data in Wayne County, Michigan. Using parallel computing, both pulse and random coloring can significantly improve column generation for solving the linear programming relaxations and we can obtain heuristic integer solutions with small optimality gaps. Combining random coloring with column enumeration, we can obtain improved integer solutions having less than 2% optimality gaps for most VRP benchmark instances and less than 1% optimality gaps for the medical home care delivery instances, both under a 30-minute computational time limit. The use of cutting planes (e.g., robust cuts) can further reduce optimality gaps on some hard instances, without much increase in the run time. Summary of Contribution: The vehicle routing problem (VRP) is a fundamental combinatorial problem, and its variants have been studied extensively in the literature of operations research and computer science. In this paper, we consider general-purpose algorithms for solving VRPs, including the column-generation approach for the linear programming relaxations of the integer programs of VRPs and the column-enumeration approach for seeking improved integer solutions. We revise the pulse algorithm and also propose a random-coloring algorithm that can be used for solving the elementary shortest path problem that formulates the pricing problem in the column-generation approach. We show that the parallel implementation of both algorithms can significantly improve the performance of column generation and the random coloring algorithm can improve the solution time and quality of the VRP integer solutions produced by the column-enumeration approach. We focus on algorithmic design for VRPs and conduct extensive computational tests to demonstrate the performance of various approaches.  more » « less
Award ID(s):
1727618 1636876 1940766 1750127
NSF-PAR ID:
10318932
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
INFORMS Journal on Computing
ISSN:
1091-9856
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For vehicle routing problems, strong dual bounds on the optimal value are needed to develop scalable exact algorithms as well as to evaluate the performance of heuristics. In this work, we propose an iterative algorithm to compute dual bounds motivated by connections between decision diagrams and dynamic programming models used for pricing in branch-and-cut-and-price algorithms. We apply techniques from the decision diagram literature to generate and strengthen novel route relaxations for obtaining dual bounds without using column generation. Our approach is generic and can be applied to various vehicle routing problems in which corresponding dynamic programming models are available. We apply our framework to the traveling salesman with drone problem and show that it produces dual bounds competitive to those from the state of the art. Applied to larger problem instances in which the state-of-the-art approach does not scale, our method outperforms other bounding techniques from the literature.

    Funding: This work was supported by the National Science Foundation [Grant 1918102] and the Office of Naval Research [Grants N00014-18-1-2129 and N00014-21-1-2240].

    Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2021.0170 .

     
    more » « less
  2. We give a quantum speedup for solving the canonical semidefinite programming relaxation for binary quadratic optimization. This class of relaxations for combinatorial optimization has so far eluded quantum speedups. Our methods combine ideas from quantum Gibbs sampling and matrix exponent updates. A de-quantization of the algorithm also leads to a faster classical solver. For generic instances, our quantum solver gives a nearly quadratic speedup over state-of-the-art algorithms. Such instances include approximating the ground state of spin glasses and MaxCut on Erdös-Rényi graphs. We also provide an efficient randomized rounding procedure that converts approximately optimal SDP solutions into approximations of the original quadratic optimization problem. 
    more » « less
  3. Drone-based last-mile delivery is an emerging technology that uses drones loaded onto a truck to deliver parcels to customers. In this paper, we introduce a fully automated system for drone-based last-mile delivery through incorporation of autonomous vehicles (AVs). A novel problem called the autonomous vehicle routing problem with drones (A-VRPD) is defined. A-VRPD is to select AVs from a pool of available AVs based on crowd sourcing, assign selected AVs to customer groups, and schedule routes for selected AVs to optimize the total operational cost. We formulate A-VRPD as a Mixed Integer Linear Program (MILP) and propose an optimization framework to solve the problem. A greedy algorithm is also developed to significantly improve the running time for large-scale delivery scenarios. Extensive simulations were conducted taking into account real-world operational costs for different types of AVs, traveled distances calculated considering the real-time traffic conditions using Google Map API, and varying load capacities of AVs. We evaluated the performance in comparison with two different state-of-the-art solutions: an algorithm designed to address the traditional vehicle routing problem with drones (VRP-D), which involves human-operated trucks working in tandem with drones to deliver parcels, and an algorithm for the two echelon vehicle routing problem (2E-VRP), wherein parcels are first transported to satellite locations and subsequently delivered from those satellites to the customers. The results indicate a substantial increase in profits for both the delivery company and vehicle owners compared with the state-of-the-art algorithms. 
    more » « less
  4. We study the D-optimal Data Fusion (DDF) problem, which aims to select new data points, given an existing Fisher information matrix, so as to maximize the logarithm of the determinant of the overall Fisher information matrix. We show that the DDF problem is NP-hard and has no constant-factor polynomial-time approximation algorithm unless P = NP. Therefore, to solve the DDF problem effectively, we propose two convex integer-programming formulations and investigate their corresponding complementary and Lagrangian-dual problems. Leveraging the concavity of the objective functions in the two proposed convex integer-programming formulations, we design an exact algorithm, aimed at solving the DDF problem to optimality. We further derive a family of submodular valid inequalities and optimality cuts, which can significantly enhance the algorithm performance. We also develop scalable randomized-sampling and local-search algorithms with provable performance guarantees. Finally, we test our algorithms using real-world data on the new phasor-measurement-units placement problem for modern power grids, considering the existing conventional sensors. Our numerical study demonstrates the efficiency of our exact algorithm and the scalability and high-quality outputs of our approximation algorithms. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms—Discrete. Funding: Y. Li and W. Xie were supported in part by Division of Civil, Mechanical and Manufacturing Innovation [Grant 2046414] and Division of Computing and Communication Foundations [Grant 2246417]. J. Lee was supported in part by Air Force Office of Scientific Research [Grants FA9550-19-1-0175 and FA9550-22-1-0172]. M. Fampa was supported in part by Conselho Nacional de Desenvolvimento Científico e Tecnológico [Grants 305444/2019-0 and 434683/2018-3]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/ijoc.2022.0235 . 
    more » « less
  5. Abstract

    We study a class of mixed integer optimization problems with linear constraints and a multilinear objective function, the so‐called mixed integer linear maximum multiplicative programs (MIL‐MMPs). Such a problem can be transformed into a second‐order cone program (SOCP) and can be solved effectively by a commercial solver such as CPLEX. However, MIL‐MMPs can also be viewed as special cases of the problem of optimization over the set of efficient solutions in multiobjective optimization. Using this observation, we develop a criterion space search algorithm for solving any MIL‐MMP. An extensive computational study on around 2000 instances illustrates that the proposed algorithm significantly outperforms not only the CPLEX mixed integer SOCP solver but also a state‐of‐the‐art algorithm that is capable of solving special cases of MIL‐MMPs. Moreover, the computational study illustrates that even if we linearize the objective function and solve the linearized problem by CPLEX, the proposed algorithm still performs significantly better.

     
    more » « less