skip to main content

Title: A Comparison of YOLO and Mask-RCNN for Detecting Cells from Microfluidic Images
High-throughput microfluidics-based assays can potentially increase the speed and quality of yeast replicative lifespan measurements. One major challenge is to efficiently convert large volumes of time-lapse images into quantitative measurements of cellular lifespans. Here, we address this challenge by prototyping an algorithm that can track cellular division events through family trees of cells. We generated a null distribution using single cells inside microfluidic traps. Based on this null distribution, we prototyped a maximum likelihood algorithm for cell tracking between images at different time-points. We inferred cell family trees through a likelihood based trace-back method. The branching patterns of the cell family trees are then used to infer replicative lifespan of the yeast mother cells. The longest branch of a cell family tree represents the full trajectory of a yeast mother cell. The replicative lifespan of this mother cell can be counted as the number of bifurcating branches of this family tree. In addition, we prototyped a different approach based on summing cells area which improved the replicative lifespan estimation significantly. These generic methods have the potential to accelerate the efficiency and expand the range of quantitative measurement of yeast replicative aging experiments.  more » « less
Award ID(s):
1720215 1761839
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
2022 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) |
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Replicative lifespan (RLS) of the budding yeast is the number of mother cell divisions until senescence and is instrumental to understanding mechanisms of cellular aging. Recent research has shown that replicative aging is heterogeneous, which argues for mixture modeling. The mixture model is a statistical method to infer subpopulations of the heterogeneous population. Mixture modeling is a relatively underdeveloped area in the study of cellular aging. There is no open access software currently available that assists extensive comparison among mixture modeling methods. To address these needs, we developed an R package called fitmix that facilitates the computation of well-known distributions utilized for RLS data and other lifetime datasets. This package can generate a group of functions for the estimation of probability distributions and simulation of random observations from well-known finite mixture models including Gompertz, Log-logistic, Log-normal, and Weibull models. To estimate and compute the maximum likelihood estimates of the model parameters, the Expectation–Maximization (EM) algorithm is employed. 
    more » « less
  2. Chromatin instability and protein homeostasis (proteostasis) stress are two well-established hallmarks of aging, which have been considered largely independent of each other. Using microfluidics and single-cell imaging approaches, we observed that, during the replicative aging of S. cerevisiae , a challenge to proteostasis occurs specifically in the fraction of cells with decreased stability within the ribosomal DNA (rDNA). A screen of 170 yeast RNA-binding proteins identified ribosomal RNA (rRNA)-binding proteins as the most enriched group that aggregate upon a decrease in rDNA stability induced by inhibition of a conserved lysine deacetylase Sir2. Further, loss of rDNA stability induces age-dependent aggregation of rRNA-binding proteins through aberrant overproduction of rRNAs. These aggregates contribute to age-induced proteostasis decline and limit cellular lifespan. Our findings reveal a mechanism underlying the interconnection between chromatin instability and proteostasis stress and highlight the importance of cell-to-cell variability in aging processes. 
    more » « less
  3. Schwenker, Friedhelm (Ed.)
    Microfluidic-based assays have become effective high-throughput approaches to examining replicative aging of budding yeast cells. Deep learning may offer an efficient way to analyze a large number of images collected from microfluidic experiments. Here, we compare three deep learning architectures to classify microfluidic time-lapse images of dividing yeast cells into categories that represent different stages in the yeast replicative aging process. We found that convolutional neural networks outperformed capsule networks in terms of accuracy, precision, and recall. The capsule networks had the most robust performance in detecting one specific category of cell images. An ensemble of three best-fitted single-architecture models achieves the highest overall accuracy, precision, and recall due to complementary performances. In addition, extending classification classes and data augmentation of the training dataset can improve the predictions of the biological categories in our study. This work lays a useful framework for sophisticated deep-learning processing of microfluidic-based assays of yeast replicative aging. 
    more » « less
  4. Abstract This paper presents a method for time-lapse 3D cell analysis. Specifically, we consider the problem of accurately localizing and quantitatively analyzing sub-cellular features, and for tracking individual cells from time-lapse 3D confocal cell image stacks. The heterogeneity of cells and the volume of multi-dimensional images presents a major challenge for fully automated analysis of morphogenesis and development of cells. This paper is motivated by the pavement cell growth process, and building a quantitative morphogenesis model. We propose a deep feature based segmentation method to accurately detect and label each cell region. An adjacency graph based method is used to extract sub-cellular features of the segmented cells. Finally, the robust graph based tracking algorithm using multiple cell features is proposed for associating cells at different time instances. We also demonstrate the generality of our tracking method on C. elegans fluorescent nuclei imagery. Extensive experiment results are provided and demonstrate the robustness of the proposed method. The code is available on and the method is available as a service through the BisQue portal. 
    more » « less
  5. Cellular aging inSaccharomyces cerevisiaecan lead to genomic instability and impaired mitotic asymmetry. To investigate the role of oxidative stress in cellular aging, we examined the effect of exogenous hydrogen peroxide on genomic instability and mitotic asymmetry in a collection of yeast strains with diverse backgrounds. We treated yeast cells with hydrogen peroxide and monitored the changes of viability and the frequencies of loss of heterozygosity (LOH) in response to hydrogen peroxide doses. The mid-transition points of viability and LOH were quantified using sigmoid mathematical functions. We found that the increase of hydrogen peroxide dependent genomic instability often occurs before a drop in viability. We previously observed that elevation of genomic instability generally lags behind the drop in viability during chronological aging. Hence, onset of genomic instability induced by exogenous hydrogen peroxide treatment is opposite to that induced by endogenous oxidative stress during chronological aging, with regards to the midpoint of viability. This contrast argues that the effect of endogenous oxidative stress on genome integrity is well suppressed up to the dying-off phase during chronological aging. We found that the leadoff of exogenous hydrogen peroxide induced genomic instability to viability significantly correlated with replicative lifespan (RLS), indicating that yeast cells’ ability to counter oxidative stress contributes to their replicative longevity. Surprisingly, this leadoff is positively correlated with an inverse measure of endogenous mitotic asymmetry, indicating a trade-off between mitotic asymmetry and cell’s ability to fend off hydrogen peroxide induced oxidative stress. Overall, our results demonstrate strong associations of oxidative stress to genomic instability and mitotic asymmetry at the population level of budding yeast.

    more » « less