Abstract We consider the problem of finding an accurate representation of neuron shapes, extracting sub-cellular features, and classifying neurons based on neuron shapes. In neuroscience research, the skeleton representation is often used as a compact and abstract representation of neuron shapes. However, existing methods are limited to getting and analyzing “curve” skeletons which can only be applied for tubular shapes. This paper presents a 3D neuron morphology analysis method for more general and complex neuron shapes. First, we introduce the concept of skeleton mesh to represent general neuron shapes and propose a novel method for computing mesh representations from 3D surface point clouds. A skeleton graph is then obtained from skeleton mesh and is used to extract sub-cellular features. Finally, an unsupervised learning method is used to embed the skeleton graph for neuron classification. Extensive experiment results are provided and demonstrate the robustness of our method to analyze neuron morphology.
more »
« less
Segmentation, tracking, and sub-cellular feature extraction in 3D time-lapse images
Abstract This paper presents a method for time-lapse 3D cell analysis. Specifically, we consider the problem of accurately localizing and quantitatively analyzing sub-cellular features, and for tracking individual cells from time-lapse 3D confocal cell image stacks. The heterogeneity of cells and the volume of multi-dimensional images presents a major challenge for fully automated analysis of morphogenesis and development of cells. This paper is motivated by the pavement cell growth process, and building a quantitative morphogenesis model. We propose a deep feature based segmentation method to accurately detect and label each cell region. An adjacency graph based method is used to extract sub-cellular features of the segmented cells. Finally, the robust graph based tracking algorithm using multiple cell features is proposed for associating cells at different time instances. We also demonstrate the generality of our tracking method on C. elegans fluorescent nuclei imagery. Extensive experiment results are provided and demonstrate the robustness of the proposed method. The code is available on and the method is available as a service through the BisQue portal.
more »
« less
- Award ID(s):
- 2125644
- PAR ID:
- 10456047
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
High-throughput microfluidics-based assays can potentially increase the speed and quality of yeast replicative lifespan measurements. One major challenge is to efficiently convert large volumes of time-lapse images into quantitative measurements of cellular lifespans. Here, we address this challenge by prototyping an algorithm that can track cellular division events through family trees of cells. We generated a null distribution using single cells inside microfluidic traps. Based on this null distribution, we prototyped a maximum likelihood algorithm for cell tracking between images at different time-points. We inferred cell family trees through a likelihood based trace-back method. The branching patterns of the cell family trees are then used to infer replicative lifespan of the yeast mother cells. The longest branch of a cell family tree represents the full trajectory of a yeast mother cell. The replicative lifespan of this mother cell can be counted as the number of bifurcating branches of this family tree. In addition, we prototyped a different approach based on summing cells area which improved the replicative lifespan estimation significantly. These generic methods have the potential to accelerate the efficiency and expand the range of quantitative measurement of yeast replicative aging experiments.more » « less
-
Ascertaining the collective viability of cells in different cell culture conditions has typically relied on averaging colorimetric indicators and is often reported out in simple binary readouts. Recent research has combined viability assessment techniques with image-based deep-learning models to automate the characterization of cellular properties. However, further development of viability measurements to assess the continuity of possible cellular states and responses to perturbation across cell culture conditions is needed. In this work, we demonstrate an image processing algorithm for quantifying features associated with cellular viability in 3D cultures without the need for assay-based indicators. We show that our algorithm performs similarly to a pair of human experts in whole-well images over a range of days and culture matrix compositions. To demonstrate potential utility, we perform a longitudinal study investigating the impact of a known therapeutic on pancreatic cancer spheroids. Using images taken with a high content imaging system, the algorithm successfully tracks viability at the individual spheroid and whole-well level. The method we propose reduces analysis time by 97% in comparison with the experts. Because the method is independent of the microscope or imaging system used, this approach lays the foundation for accelerating progress in and for improving the robustness and reproducibility of 3D culture analysis across biological and clinical research.more » « less
-
Abstract Time-lapse imaging is a powerful approach to gain insight into the dynamic responses of cells, but the quantitative analysis of morphological changes over time remains challenging. Here, we exploit the concept of “trajectory embedding” to analyze cellular behavior using morphological feature trajectory histories—that is, multiple time points simultaneously, rather than the more common practice of examining morphological feature time courses in single timepoint (snapshot) morphological features. We apply this approach to analyze live-cell images of MCF10A mammary epithelial cells after treatment with a panel of microenvironmental perturbagens that strongly modulate cell motility, morphology, and cell cycle behavior. Our morphodynamical trajectory embedding analysis constructs a shared cell state landscape revealing ligand-specific regulation of cell state transitions and enables quantitative and descriptive models of single-cell trajectories. Additionally, we show that incorporation of trajectories into single-cell morphological analysis enables (i) systematic characterization of cell state trajectories, (ii) better separation of phenotypes, and (iii) more descriptive models of ligand-induced differences as compared to snapshot-based analysis. This morphodynamical trajectory embedding is broadly applicable to the quantitative analysis of cell responses via live-cell imaging across many biological and biomedical applications.more » « less
-
In computer vision, tracking humans across camera views remains challenging, especially for complex scenarios with frequent occlusions, significant lighting changes and other difficulties. Under such conditions, most existing appearance and geometric cues are not reliable enough to distinguish humans across camera views. To address these challenges, this paper presents a stochastic attribute grammar model for leveraging complementary and discriminative human attributes for enhancing cross-view tracking. The key idea of our method is to introduce a hierarchical representation, parse graph, to describe a subject and its movement trajectory in both space and time domains. This results in a hierarchical compositional representation, comprising trajectory entities of varying level, including human boxes, 3D human boxes, tracklets and trajectories. We use a set of grammar rules to decompose a graph node (e.g. tracklet) into a set of children nodes (e.g. 3D human boxes), and augment each node with a set of attributes, including geometry (e.g., moving speed, direction), accessories (e.g., bags), and/or activities (e.g., walking, running). These attributes serve as valuable cues, in addition to appearance features (e.g., colors), in determining the associations of human detection boxes across cameras. In particular, the attributes of a parent node are inherited by its children nodes, resulting in consistency constraints over the feasible parse graph. Thus, we cast cross-view human tracking as finding the most discriminative parse graph for each subject in videos. We develop a learning method to train this attribute grammar model from weakly supervised training data. To infer the optimal parse graph and its attributes, we develop an alternative parsing method that employs both top-down and bottom-up computations to search the optimal solution. We also explicitly reason the occlusion status of each entity in order to deal with significant changes of camera viewpoints. We evaluate the proposed method over public video benchmarks and demonstrate with extensive experiments that our method clearly outperforms state-of-theart tracking methods.more » « less