skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-resolution observations of the North Pacific transition layer from a Lagrangian float
Abstract Acrucial region of the ocean surface boundary layer (OSBL) is the strongly-sheared and -stratified transition layer (TL) separating the mixed layer from the upper pycnocline, where a diverse range of waves and instabilities are possible. Previous work suggests that these different waves and instabilities will lead to different OSBL behaviours. Therefore, understanding which physical processes occur is key for modelling the TL. Here we present observations of the TL from a Lagrangian float deployed for 73 days near Ocean Weather Station Papa (50°N, 145°W) during Fall 2018. The float followed the vertical motion of the TL, continuously measuring profiles across it using an ADCP, temperature chain and salinity sensors. The temperature chain made depth/time images of TL structures with a resolution of 6cm and 3 seconds. These showed the frequent occurrence of very sharp interfaces, dominated by temperature jumps of O(1)°C over 6cm or less. Temperature inversions were typically small (≲ 10cm), frequent, and strongly-stratified; very few large overturns were observed. The corresponding velocity profiles varied over larger length scales than the temperature profiles. These structures are consistent with scouring behaviour rather than Kelvin-Helmholtz-type overturning. Their net effect, estimated via a Thorpe-scale analysis, suggests that these frequent small temperature inversions can account for the observed mixed layer deepening and entrainment flux. Corresponding estimates of dissipation, diffusivity, and heat fluxes also agree with previous TL studies, suggesting that the TL dynamics is dominated by these nearly continuous 10cm-scale mixing structures, rather than by less frequent larger overturns.  more » « less
Award ID(s):
1657676
PAR ID:
10318968
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Physical Oceanography
ISSN:
0022-3670
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The stirring and mixing of heat and momentum in the ocean surface boundary layer (OSBL) are dominated by 1 to 10 km fluid flows – too small to be resolved in global and regional ocean models. Instead, these processes are parametrized. Two main parametrizations include vertical mixing by surface-forced metre-scale turbulence and overturning by kilometre-scale submesoscale frontal flows and instabilities. In present models, these distinct parametrizations are implemented in tandem, yet ignore meaningful interactions between these two scales that may influence net turbulent fluxes. Using a large-eddy simulation of frontal spin down resolving processes at both scales, this work diagnoses submesoscale and surface-forced turbulence impacts that are the foundation of OSBL parametrizations, following a traditional understanding of these flows. It is shown that frontal circulations act to suppress the vertical buoyancy flux by surface forced turbulence, and that this suppression is not represented by traditional boundary layer turbulence theory. A main result of this work is that current OSBL parametrizations excessively mix buoyancy and overestimate turbulence dissipation rates in the presence of lateral flows. These interactions have a direct influence on the upper ocean potential vorticity and energy budgets with implications for global upper ocean budgets and circulation. 
    more » « less
  2. Abstract The turbulent ocean surface boundary layer (OSBL) shoals during daytime solar surface heating, developing a diurnal warm layer (DWL). The DWL significantly influences OSBL dynamics by trapping momentum and heat in a shallow near‐surface layer. Therefore, DWL depth is critical for understanding OSBL transport and ocean‐atmosphere coupling. A great challenge for determining DWL depth is considering wave‐driven Langmuir turbulence (LT), which increases vertical transport. This study investigates observations with moderate wind speeds (4–7 m/s at 10 m height) and swell waves for which breaking wave effects are less pronounced. By employing turbulence‐resolving large eddy simulation experiments that cover observed wind, wave, and heating conditions based on the wave‐averaged Craik‐Lebovich equation, we develop a DWL depth scaling unifying previous approaches. This scaling closely agrees with observed DWL depths from a year‐long mooring deployment in the subtropical North Atlantic, demonstrating the critical role of LT in determining DWL depth and OSBL dynamics. 
    more » « less
  3. null (Ed.)
    Abstract Turbulence driven by wind and waves controls the transport of heat, momentum, and matter in the ocean surface boundary layer (OSBL). For realistic ocean conditions, winds and waves are often neither aligned nor constant, for example, when winds turn rapidly. Based on a Large Eddy Simulation (LES) method, which captures shear-driven turbulence (ST) and Langmuir turbulence (LT) driven by the Craik-Leibovich vortex force, we investigate the OSBL response to abruptly turning winds. We design idealized LES experiments, whose winds are initially constant to equilibrate OSBL turbulence before abruptly turning 90° either cyclonically or anticyclonically. The transient Stokes drift for LT is estimated from a spectral wave model. The OSBL response includes three successive stages that follow the change in direction. During stage 1, turbulent kinetic energy (TKE) decreases due to reduced TKE production. Stage 2 is characterized by TKE increasing with TKE shear production recovering and exceeding TKE dissipation. Transient TKE levels may exceed their stationary values due to inertial resonance and non-equilibrium turbulence. Turbulence relaxes to its equilibrium state at stage 3, but LT still adjusts due to slowly developing waves. During stages 1 and 2, greatly misaligned wind and waves lead to Eulerian TKE production exceeding Stokes TKE production. A Reynolds stress budget analysis and Reynolds-averaged Navier-Stokes equation models indicate that Stokes production furthermore drives the OSBL response. The Coriolis effects result in asymmetrical OSBL responses to wind turning directions. Our results suggest that transient wind conditions play a key role in understanding realistic OSBL dynamics. 
    more » « less
  4. Earth’s magnetic field is generated by turbulent motion in its fluid outer core. Although the bulk of the outer core is vigorously convecting and well mixed, some seismic, geomagnetic and geodynamic evidence suggests that a global stably stratified layer exists at the top of Earth’s core. Such a layer would strongly influence thermal, chemical and momentum exchange across the core–mantle boundary and thus have important implications for the dynamics and evolution of the core. Here we argue that the relevant scenario is not global stratification, but rather regional stratification arising solely from the lateral variations in heat flux at the core–mantle boundary. Using our extensive suite of numerical simulations of the dynamics of the fluid core with het- erogeneous core–mantle boundary heat flux, we predict that thermal regional inversion layers extend hundreds of kilometres into the core under anomalously hot regions of the lowermost mantle. Although the majority of the outermost core remains actively convecting, sufficiently large and strong regional inversion layers produce a one-dimensional temperature profile that mimics a globally stratified layer below the core–mantle boundary—an apparent thermal stratification despite the average heat flux across the core–mantle boundary being strongly superadiabatic. 
    more » « less
  5. Abstract Atmospheric convectively coupled equatorial Kelvin waves (CCKWs) are a major tropical weather feature strongly influenced by ocean–atmosphere interactions. However, prediction of the development and propagation of CCKWs remains a challenge for models. The physical processes involved in these interactions are assessed by investigating the oceanic response to the passage of CCKWs across the eastern Indian Ocean and Maritime Continent using the NEMO ocean model analysis with data assimilation. Three‐dimensional life cycles are constructed for “solitary” CCKW events. As a CCKW propagates over the eastern Indian Ocean, the immediate thermodynamic ocean response includes cooling of the ocean surface and subsurface, deepening of the mixed layer depth, and an increase in the mixed layer heat content. Additionally, a dynamical downwelling signal is observed two days after the peak in the CCKW westerly wind burst, which propagates eastward along the Equator and then follows the Sumatra and Java coasts, consistent with a downwelling oceanic Kelvin wave with an average phase speed of 2.3 m s−1. Meridional and vertical structures of zonal velocity anomalies are consistent with this framework. This dynamical feature is consistent across distinct CCKW populations, indicating the importance of CCKWs as a source of oceanic Kelvin waves in the eastern Indian Ocean. The subsurface dynamical response to the CCKWs is identifiable up to 11 days after the forcing. These ocean feedbacks on time scales longer than the CCKW life cycle help elucidate how locally driven processes can rectify onto longer time‐scale processes in the coupled ocean–atmosphere system. 
    more » « less