skip to main content


Title: Interannual climate variation influences nest initiation date and nest productivity of the Red-cockaded Woodpecker at the northwestern edge of its range
Abstract Climate change, including directional shifts in weather averages and extremes and increased interannual weather variation, is influencing demography and distributions for many bird species. The Ouachita Mountains ecoregion in southeast Oklahoma and west-central Arkansas contains 2 populations of the Red-cockaded Woodpecker (Dryobates borealis, RCW), a federally endangered, cooperatively breeding species. Since this region is at the RCW’s northwestern range periphery, ecological thresholds likely are limiting for the species. Therefore, populations in this region may be more sensitive to climate change-associated weather variation and unpredictability. We used 26 years of nesting data (1991–2016) from the 2 RCW populations to determine if interannual weather variation has affected nesting phenology and productivity. For each population, we used daily temperature and precipitation data for 3 periods (30 and 60 days before nesting; 40 days overlapping the nesting period) to determine how weather influences median nesting date and average clutch size and numbers of fledglings. In a separate analysis, we used shorter time windows with individual nests as replicates to determine how discrete weather events (e.g., minimum and maximum temperatures and intense precipitation events) affect nest success and partial brood loss. For both Oklahoma and Arkansas populations, warmer early spring temperatures generally advanced nesting and increased clutch size and fledgling number. However, the effects of average precipitation varied depending on the amount and duration of precipitation in different time periods. At the nest level, most variables reflecting discrete temperature and precipitation events were unrelated to nest success and brood loss, suggesting that factors other than weather (e.g., habitat quality and predation) more strongly influenced the nesting output of individual RCW broods. Our results indicate RCWs are responding to interannual weather variation in complex and variable ways. However, warming trends may generally be having positive effects on the species at the northwestern edge of its range.  more » « less
Award ID(s):
1946093
NSF-PAR ID:
10318996
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Ornithological Applications
Volume:
123
Issue:
2
ISSN:
0010-5422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Intensification of livestock production has reduced heterogeneity in vegetative structure in managed grasslands, which has been linked to widespread declines in grassland songbird populations throughout North America. Patch-burn grazing management aims to restore some of that heterogeneity in vegetative structure by burning discrete pasture sections, so that cattle preferentially graze in recently burned areas. Although patch-burn grazing can increase reproductive success of grassland songbirds, we know little about possible interactions with regional variation in predator communities or brood parasite abundance, or annual variation in weather conditions. Using six years of data from two tallgrass prairie sites in eastern Kansas, USA, we tested effects of patch-burn grazing on the rates of brood parasitism, clutch size, nest survival, and fledging success of three common grassland songbirds, Dickcissels (Spiza americana), Eastern Meadowlarks (Sturnella magna), and Grasshopper Sparrows (Ammodramus savannarum), among pastures managed with patch-burn grazing versus pastures that were annually burned and either grazed or ungrazed. Dickcissel nests experienced lower parasitism (72.8 ± 4.6% SE vs. 89.1 ± 2.2%) and Eastern Meadowlarks had higher nest survival (63.2 ± 20.5% vs. 16.5 ± 3.5%) in annually burned and ungrazed pastures than pastures managed with patch-burn grazing. However, average number of host fledglings per nesting attempt did not differ among management treatments for any species. Annual variation in weather conditions had a large effect on vegetation structure, but not on reproductive success. Probability of brood parasitism was consistently high (25.5‒84.7%) and nest survival was consistently low (9.9–16.9%) for all species pooled across treatments, sites, and years, indicating that combined effects of predation, parasitism and drought can offset potential benefits of patch-burn grazing management previously found in tallgrass prairies. Although differences in reproductive success among management treatments were minimal, patch-burn grazing management could still benefit population dynamics of grassland songbirds in areas where nest predators and brood parasites are locally abundant by providing suitable nesting habitat for bird species that require greater amounts of vegetation cover and litter, generally not present in burned pastures.

     
    more » « less
  2. Abstract

    Elucidating factors that limit the number of offspring produced is fundamental to understanding life‐history evolution. Here, we examine the hypothesis that parental ability to maintain an optimal physical developmental environment for all offspring constrains clutch size via effects on offspring quality.

    Experimental laboratory studies of birds have shown that a <1°C difference in average incubation temperature has diverse effects on fitness‐related post‐hatching offspring phenotypes. Thus, the inability of parents to maintain optimal incubation temperatures could constrain clutch sizes.

    A fundamental question that has not been sufficiently addressed is whether larger clutch sizes lead towithinnest variation in egg temperature that is large enough to produce offspring with different phenotypes within a brood. This could lead to differential survival among offspring, and could create a trade‐off between offspring number and quality.

    We manipulated clutch size in nests of free‐living wood ducks and measured incubation temperature among and within clutches using multiple temperature loggers.

    As clutch size increased, average incubation temperatures were lower and more variable, and eggs took longer to hatch. Notably, the range inaverageincubation temperature among eggswithinnests increased with clutch size and exceeded 1°C in large clutches. Clutch size did not affect hatch success.

    In conjunction with our companion laboratory studies that used artificial incubation to document the effects of temperature variation on fitness‐related traits in this species, our work suggests that suboptimal incubation temperatures could be a factor that limits clutch size through diminishing returns on post‐hatch offspring quality.

    A freeplain language summarycan be found within the Supporting Information of this article.

     
    more » « less
  3. Abstract

    The strategies by which animals allocate reproductive effort across their lifetimes vary, and the causes of variation in those strategies are actively debated. In birds, most research has focused heavily on variation in clutch size and fecundity, but incubation behaviour and other functionally related traits have received less attention. Variation in incubation period duration is notable because time‐dependent sources of clutch mortality should impose strong directional selection to minimize the incubation period. However, life‐history theory predicts multiple mechanisms by which inter‐ and intraspecific variation in incubation behaviours may be adaptive.

    We conducted one of the first studies of intraspecific latitudinal variation in avian incubation behaviours across a large portion of a single species’ range. We placed motion‐activated nest cameras inside burrowing owl nests at five study sites to quantify variation in daily nest attentiveness, cumulative nest attendance and incubation period duration. We tested predictions of two alterative hypotheses that have been proposed to explain variation in incubation periods: theparental risk tolerance hypothesisand theneonate quality hypothesis.

    Daily nest attentiveness, cumulative nest attendance and incubation period duration in burrowing owls were all positively correlated with latitude. Burrowing owls reduced their daily nest attentiveness at low latitudes and on days when the average nest temperature was within the range that is optimal for embryo development. Further, longer incubation periods were most strongly associated with greater cumulative nest attendance instead of reduced daily nest attentiveness.

    These results support predictions of theneonate quality hypothesis:longer incubation periods result from stronger selection on neonate quality rather than selection to reduce reproductive effort in response to low extrinsic mortality risk. However, some owls facultatively reduced their daily nest attentiveness, and this result supports the general hypothesis that incubation decisions reflect a trade‐off between reproduction and self‐maintenance, and that the optimal solution to that trade‐off varies systematically in response to latitudinal gradients in adult mortality.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  4. Leppla, Norman (Ed.)
    Abstract

    Bombus vosnesenskii Radowszkowski, 1862 is one of three bumble bee species commercially available for pollination services in North America; however, little is documented about B. vosnesenskii colony life cycle or the establishment of ex situ rearing, mating, and overwintering practices. In this study, we documented nest success, colony size, and gyne production; recorded the duration of mating events; assessed overwintering survival of mated gynes; and evaluated second-generation nest success for colonies established from low- and high-elevation wild-caught B. vosnesenskii gynes. Of the 125 gynes installed, 62.4% produced brood cells (nest initiation) and 43.2% had at least 1 worker eclose (nest establishment). High-elevation B. vosnesenskii gynes had significantly higher nest initiation and establishment success than low-elevation gynes. However, low-elevation colonies were significantly larger with queens producing more gynes on average. Mating was recorded for 200 low-elevation and 37 high-elevation gynes, resulting in a mean duration of 62 and 51 min, respectively. Mated gynes were then placed into cold storage for 54 days to simulate overwintering, which resulted in 59.1% of low-elevation gynes surviving and 91.9% of high-elevation gynes surviving. For second-generation low-elevation gynes, 26.4% initiated nesting and 14.3% established nesting. Second-generation high-elevation gynes did not initiate nesting despite CO2 narcosis treatments. Overall, these results increase our understanding of B. vosnesenskii nesting, mating, and overwintering biology from 2 elevations. Furthermore, this study provides information on successful husbandry practices that can be used by researchers and conservationists to address knowledge gaps and enhance the captive rearing of bumble bees.

     
    more » « less
  5. Abstract

    Brown‐headed cowbirds (Molothrus ater) are generalist obligate brood parasites, laying in the nest of nearly 300 avian species, and successfully parasitizing well over 100 host species. Cowbird eggs are generally considered non‐mimetic, although some have suggested that cowbird eggs resemble several of their host species’ eggs. To date, no investigation has examined the level of avian‐perceived similarity between cowbird and diverse host eggs in the contexts of light characteristics at the nest and the visual system of the relevant viewer. Because the cowbird exploits a wide range of species that lay in a variety of nest types, hosts view these eggs under an array of light conditions which could facilitate or hinder egg discrimination. When considering the visual system of the relevant viewers and the light conditions at their nest, we found that the coloration of cowbird eggs was more similar to host than non‐host species’ eggs. Host responses (whether they accept or reject cowbird eggs) were not statistically different when hosts perceived a large chromatic difference between their own eggs and the cowbird's eggs. Instead, we found that host responses were predicted by the degree to which nesting light conditions facilitated color similarity between host and cowbird eggs, such that hosts typically nesting under light conditions where this color discrimination task was more challenging were more likely to reject cowbird eggs. This suggests that the nesting light environment may have selected for increased coevolved egg recognition abilities in a suite of cowbird host species, even in the absence of parasitic egg color mimicry.

     
    more » « less