skip to main content


Title: The binary central star of the bipolar pre-planetary nebula IRAS 08005−2356 (V510 Pup)
ABSTRACT Current models predict that binary interactions are a major ingredient in the formation of bipolar planetary nebulae (PNe) and pre-planetary nebulae (PPNe). Despite years of radial velocity (RV) monitoring, the paucity of known binaries amongst the latter systems means data are insufficient to examine this relationship in detail. In this work, we report on the discovery of a long-period (P = 2654 ± 124 d) binary at the centre of the Galactic bipolar PPN IRAS 08005−2356 (V510 Pup), determined from long-term spectroscopic and near-infrared time-series data. The spectroscopic orbit is fitted with an eccentricity of 0.36 ± 0.05, which is similar to that of other long-period post-AGB binaries. Time-resolved Hα profiles reveal high-velocity outflows (jets) with deprojected velocities up to 231$_{-27}^{+31}$ km s−1 seen at phases when the luminous primary is behind the jet. The outflow traced by Hα is likely produced via accretion on to a main-sequence companion, for which we calculate a mass of 0.63 ± 0.13 M⊙. This discovery is one of the first cases of a confirmed binary PPN and demonstrates the importance of high-resolution spectroscopic monitoring surveys using large telescopes in revealing binarity among these systems.  more » « less
Award ID(s):
1812874
NSF-PAR ID:
10319081
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
508
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present 2D hydrodynamical simulations of the transition of a protoplanetary nebula (PPN) to a planetary nebula for central stars in binary systems that have undergone a common-envelope event. After 1000 yr of magnetically driven dynamics (PPN phase), a line-driven stellar wind is introduced into the computational domain and the expansion of the nebula is simulated for another 10 000 yr, including the effects of stellar photoionization. In this study we consider central stars with main sequence (final) masses of 1 (0.569) and 2.5 (0.677) M⊙, together with a 0.6-M⊙ main-sequence companion. Extremely bipolar, narrow-waisted PPNe result in bipolar planetary nebulae, while the rest of the shapes mainly evolve into elliptical planetary nebulae. The initial magnetic field’s effects on the collimated structures, such as jets, tend to disappear in most of the cases, leaving behind the remnants of those features in only a few cases. Equatorial zones fragmented mainly by photoionization (1-M⊙progenitors), result in ‘necklace’ structures made of cometary clumps aligned with the radiation field. On the other hand, fragmentation by photoionization and shocked wind (2.5-M⊙progenitors) give rise to the formation of multiple clumps in the latitudinal direction, which remain within the lobes, close to the center, which are immersed and surrounded by hot shocked gas, not necessarily aligned with the radiation field. These results reveal that the fragmentation process has a dependence on the stellar-mass progenitor. This fragmentation is made possible by the distribution of gas in the previous post-common-envelope PPN as sculpted by the action of the jets.

     
    more » « less
  2. Abstract Astrophysical outflows treated initially as spherically symmetric often show evidence for asymmetry once seen at higher resolution. The preponderance of aspherical and multipolar planetary nebulae (PN) and pre-planetary nebulae (PPN) was evident after many observations from the Hubble Space Telescope. Binary interactions have long been thought to be essential for shaping asymmetric PN/PPN, but how? PPN are the more kinematically demanding of the two, and warrant particular focus. I address how progress from observation and theory suggests two broad classes of accretion driven PPN jets: one for wider binaries (PPN-W) where the companion is outside the outer radius of the giant and accretes via Roche lobe overflow, and the other which occurs in the later stages of CE for close binaries (PPN-C). The physics within these scenarios connects to progress and open questions about the role and origin of magnetic fields in the engines and in astrophysical jets more generally. 
    more » « less
  3. ABSTRACT

    As part of a survey to find close binary systems among central stars of planetary nebula, we present two newly discovered binary systems. GALEX J015054.4+310745 is identified as the central star of the possible planetary nebula Fr 2-22. We find it to be a single-lined spectroscopic binary with an orbital period of 0.2554435(10) d. We support the previous identification of GALEX J015054.4+310745 as an sdB star and provide physical parameters for the star from spectral modelling. We identify its undetected companion as a likely He white dwarf. Based on this information, we find it unlikely that Fr 2-22 is a true planetary nebula. In addition, the central star of the true planetary nebula Hen 2-84 is found to be a photometric variable, likely due to the irradiation of a cool companion. The system has an orbital period of 0.485645(30) d. We discuss limits on binary parameters based on the available light-curve data. Hen 2-84 is a strongly shaped bipolar planetary nebula, which we now add to the growing list of axially or point-symmetric planetary nebulae with a close binary central star.

     
    more » « less
  4. Context. Luminous blue variables (LBVs) are characterised by strong photometric and spectroscopic variability. They are thought to be in a transitory phase between O-type stars on the main sequence and the Wolf-Rayet stage. Recent studies also evoked the possibility that they might be formed through binary interaction. Only a few are known in binary systems so far, but their multiplicity fraction is still uncertain. Aims. We derive the binary fraction of the Galactic LBV population. We combine multi-epoch spectroscopy and long-baseline interferometry to probe separations from 0.1 to 120 mas around confirmed and candidate LBVs. Methods. We used a cross-correlation technique to measure the radial velocities of these objects. We identified spectroscopic binaries through significant radial velocity variability with an amplitude larger than 35 km s −1 . We also investigated the observational biases to take them into account when we established the intrinsic binary fraction. We used CANDID to detect interferometric companions, derive their flux fractions, and their positions on the sky. Results. From the multi-epoch spectroscopy, we derive an observed spectroscopic binary fraction of 26 −10 +16 %. Considering period and mass ratio ranges from log( P orb ) = 0 − 3 (i.e. from 1 to 1000 days), q  = 0.1 − 1.0, and a representative set of orbital parameter distributions, we find a bias-corrected binary fraction of 62 −24 +38 %. Based on data of the interferometric campaign, we detect a binary fraction of 70 ± 9% at projected separations between 1 and 120 mas. Based on the derived primary diameters and considering the distances of these objects, we measure for the first time the exact radii of Galactic LBVs to be between 100 and 650  R ⊙ . This means that it is unlikely that short-period systems are included among LBV-like stars. Conclusions. This analysis shows for the first time that the binary fraction in the Galactic LBV population is large. If they form through single-star evolution, their orbit must be large initially. If they form through a binary channel, the implication is that either massive stars in short binary systems must undergo a phase of fully non-conservative mass transfer to be able to sufficiently widen the orbit to form an LBV, or that LBVs form through merging in initially binary or triple systems. Interferometric follow-up would provide the distributions of orbital parameters at more advanced stages and would serve to quantitatively test the binary evolution in massive stars. 
    more » « less
  5. ABSTRACT

    AM CVn-type systems are ultracompact, helium-accreting binary systems that are evolutionarily linked to the progenitors of thermonuclear supernovae and are expected to be strong Galactic sources of gravitational waves detectable to upcoming space-based interferometers. AM CVn binaries with orbital periods ≲20–23 min exist in a constant high state with a permanently ionized accretion disc. We present the discovery of TIC 378898110, a bright (G = 14.3 mag), nearby (309.3 ± 1.8 pc), high-state AM CVn binary discovered in TESS two-minute-cadence photometry. At optical wavelengths, this is the third-brightest AM CVn binary known. The photometry of the system shows a 23.07172(6) min periodicity, which is likely to be the ‘superhump’ period and implies an orbital period in the range 22–23 min. There is no detectable spectroscopic variability. The system underwent an unusual, year-long brightening event during which the dominant photometric period changed to a shorter period (constrained to 20.5 ± 2.0 min), which we suggest may be evidence for the onset of disc-edge eclipses. The estimated mass transfer rate, $\log (\dot{M} / \mathrm{M_\odot } \, \mathrm{yr}^{-1}) = -6.8 \pm 1.0$, is unusually high and may suggest a high-mass or thermally inflated donor. The binary is detected as an X-ray source, with a flux of $9.2 ^{+4.2}_{-1.8} \times 10^{-13}$ erg cm−2 s−1 in the 0.3–10 keV range. TIC 378898110 is the shortest-period binary system discovered with TESS, and its large predicted gravitational-wave amplitude makes it a compelling verification binary for future space-based gravitational wave detectors.

     
    more » « less