skip to main content

Search for: All records

Award ID contains: 1812874

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Hot subdwarf stars are mostly stripped red giants that can exhibit photometric variations due to stellar pulsations, eclipses, the reflection effect, ellipsoidal modulation, and Doppler beaming. Detailed studies of their light curves help constrain stellar parameters through asteroseismological analyses or binary light-curve modeling and generally improve our capacity to draw a statistically meaningful picture of this enigmatic stage of stellar evolution. From an analysis of Gaia DR2 flux errors, we have identified around 1200 candidate hot subdwarfs with inflated flux errors for their magnitudes—a strong indicator of photometric variability. As a pilot study, we obtained 2 minute cadence TESS Cycle 2 observations of 187 candidate hot subdwarfs with anomalous Gaia flux errors. More than 90% of our targets show significant photometric variations in their TESS light curves. Many of the new systems found are cataclysmic variables, but we report the discovery of several new variable hot subdwarfs, including HW Vir binaries, reflection-effect systems, pulsating sdBV s stars, and ellipsoidally modulated systems. We determine atmospheric parameters for select systems using follow-up spectroscopy from the 3 m Shane telescope. Finally, we present a Fourier diagnostic plot for classifying binary light curves using the relative amplitudes and phases of their fundamental andmore »harmonic signals in their periodograms. This plot makes it possible to identify certain types of variables efficiently, without directly investigating their light curves, and may assist in the rapid classification of systems observed in large photometric surveys.« less
    Free, publicly-accessible full text available March 1, 2023
  2. ABSTRACT Current models predict that binary interactions are a major ingredient in the formation of bipolar planetary nebulae (PNe) and pre-planetary nebulae (PPNe). Despite years of radial velocity (RV) monitoring, the paucity of known binaries amongst the latter systems means data are insufficient to examine this relationship in detail. In this work, we report on the discovery of a long-period (P = 2654 ± 124 d) binary at the centre of the Galactic bipolar PPN IRAS 08005−2356 (V510 Pup), determined from long-term spectroscopic and near-infrared time-series data. The spectroscopic orbit is fitted with an eccentricity of 0.36 ± 0.05, which is similar to that of other long-period post-AGB binaries. Time-resolved Hα profiles reveal high-velocity outflows (jets) with deprojected velocities up to 231$_{-27}^{+31}$ km s−1 seen at phases when the luminous primary is behind the jet. The outflow traced by Hα is likely produced via accretion on to a main-sequence companion, for which we calculate a mass of 0.63 ± 0.13 M⊙. This discovery is one of the first cases of a confirmed binary PPN and demonstrates the importance of high-resolution spectroscopic monitoring surveys using large telescopes in revealing binarity among these systems.
  3. Eclipsing post-common-envelope binaries are highly important for resolving the poorly understood, very short-lived common-envelope phase of stellar evolution. Most hot subdwarfs (sdO/Bs) are the bare helium-burning cores of red giants that have lost almost all of their hydrogen envelope. This mass loss is often triggered by common-envelope interactions with close stellar or even substellar companions. Cool companions to hot subdwarf stars such as late-type stars and brown dwarfs are detectable from characteristic light-curve variations – reflection effects and often eclipses. In the recently published catalog of eclipsing binaries in the Galactic Bulge and in the Asteroid Terrestrial-impact Last Alert System (ATLAS) survey, we discovered 125 new eclipsing systems showing a reflection effect seen by visual inspection of the light curves and using a machine-learning algorithm, in addition to the 36 systems previously discovered by the Optical Gravitational Lesing Experiment (OGLE) team. The Eclipsing Reflection Effect Binaries from Optical Surveys (EREBOS) project aims at analyzing all newly discovered eclipsing binaries of the HW Vir type (hot subdwarf + close, cool companion) based on a spectroscopic and photometric follow up to derive the mass distribution of the companions, constrain the fraction of substellar companions, and determine the minimum mass needed to stripmore »off the red-giant envelope. To constrain the nature of the primary we derived the absolute magnitude and the reduced proper motion of all our targets with the help of the parallaxes and proper motions measured by the Gaia mission and compared those to the Gaia white-dwarf candidate catalog. It was possible to derive the nature of a subset of our targets, for which observed spectra are available, by measuring the atmospheric parameter of the primary, confirming that less than 10% of our systems are not sdO/Bs with cool companions but are white dwarfs or central stars of planetary nebula. This large sample of eclipsing hot subdwarfs with cool companions allowed us to derive a significant period distribution for hot subdwarfs with cool companions for the first time showing that the period distribution is much broader than previously thought and is ideally suited to finding the lowest-mass companions to hot subdwarf stars. The comparison with related binary populations shows that the period distribution of HW Vir systems is very similar to WD+dM systems and central stars of planetary nebula with cool companions. In the future, several new photometric surveys will be carried out, which will further increase the sample of this project, providing the potential to test many aspects of common-envelope theory and binary evolution.« less