skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Single-nanometer iron oxide nanoparticles as tissue-permeable MRI contrast agents
Magnetic nanoparticles are robust contrast agents for MRI and often produce particularly strong signal changes per particle. Leveraging these effects to probe cellular- and molecular-level phenomena in tissue can, however, be hindered by the large sizes of typical nanoparticle contrast agents. To address this limitation, we introduce single-nanometer iron oxide (SNIO) particles that exhibit superparamagnetic properties in conjunction with hydrodynamic diameters comparable to small, highly diffusible imaging agents. These particles efficiently brighten the signal in T 1 -weighted MRI, producing per-molecule longitudinal relaxation enhancements over 10 times greater than conventional gadolinium-based contrast agents. We show that SNIOs permeate biological tissue effectively following injection into brain parenchyma or cerebrospinal fluid. We also demonstrate that SNIOs readily enter the brain following ultrasound-induced blood–brain barrier disruption, emulating the performance of a gadolinium agent and providing a basis for future biomedical applications. These results thus demonstrate a platform for MRI probe development that combines advantages of small-molecule imaging agents with the potency of nanoscale materials.  more » « less
Award ID(s):
1911592
PAR ID:
10319086
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
42
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The leitmotifs of magnetic resonance imaging (MRI) contrast agent-induced complications range from acute kidney injury, symptoms associated with gadolinium exposure (SAGE)/gadolinium deposition disease, potentially fatal gadolinium encephalopathy, and irreversible systemic fibrosis. Gadolinium is the active ingredient of these contrast agents, a non-physiologic lanthanide metal. The mechanisms of MRI contrast agent-induced diseases are unknown. Mice were treated with a MRI contrast agent. Human kidney tissues from contrast-naïve and MRI contrast agent-treated patients were obtained and analyzed. Kidneys (human and mouse) were assessed with transmission electron microscopy and scanning transmission electron microscopy with X-ray energy-dispersive spectroscopy. MRI contrast agent treatment resulted in unilamellar vesicles and mitochondriopathy in renal epithelium. Electron-dense intracellular precipitates and the outer rim of lipid droplets were rich in gadolinium and phosphorus. We conclude that MRI contrast agents are not physiologically inert. The long-term safety of these synthetic metal–ligand complexes, especially with repeated use, should be studied further. 
    more » « less
  2. Magnetic resonance imaging (MRI) is a medical imaging technique that provides detailed information on tissues and organs. However, the low sensitivity of the technique requires the use of contrast agents, usually ones that are based on the chelates of gadolinium ions. In an effort to improve MRI signal intensity, we developed two strategies whereby the ligand DOTA and Gd(III) ions are contained within Zn(II)-promoted collagen peptide (NCoH) supramolecular assemblies. The DOTA moiety was included in the assembly either via a collagen peptide sidechain (NHdota) or through metal–ligand interactions with a His-tagged DOTA conjugate (DOTA-His6). SEM verified that the morphology of the NCoH assembly was maintained in the presence of the DOTA-containing peptides (microflorettes), and EDX and ICP-MS confirmed that Gd(III) ions were incorporated within the microflorettes. The Gd(III)-loaded DOTA florettes demonstrated higher intensities for the T1-weighted MRI signal and higher longitudinal relaxivity (r1) values, as compared to the clinically used contrast agent Magnevist. Additionally, no appreciable cellular toxicity was observed with the collagen microflorettes loaded with Gd(III). Overall, two peptide-based materials were generated that have potential as MRI contrast agents. 
    more » « less
  3. Abstract Millions of people a year receive magnetic resonance imaging (MRI) contrast agents for the diagnosis of conditions as diverse as fatty liver disease and cancer. Gadolinium chelates, which provide preferredT1contrast, are the current standard but face an uncertain future due to increasing concerns about their nephrogenic toxicity as well as poor performance in high‐field MRI scanners. Gadolinium‐containing nanocrystals are interesting alternatives as they bypass the kidneys and can offer the possibility of both intracellular accumulation and active targeting. Nanocrystal contrast performance is notably limited, however, as their organic coatings block water from close interactions with surface Gadoliniums. Here, these steric barriers to water exchange are minimized through shape engineering of plate‐like nanocrystals that possess accessible Gadoliniums at their edges. Sulfonated surface polymers promote second‐sphere relaxation processes that contribute remarkable contrast even at the highest fields (r1= 32.6 × 10−3mGd−1s−1at 9.4 T). These noncytotoxic materials release no detectable free Gadolinium even under mild acidic conditions. They preferentially accumulate in the liver of mice with a circulation half‐life 50% longer than commercial agents. These features allow theseT1MRI contrast agents to be applied for the first time to the ex vivo detection of nonalcoholic fatty liver disease in mice. 
    more » « less
  4. Abstract Magnetic resonance imaging (MRI) is a powerful and widely used in vivo imaging technique that enables whole body imaging without ionizing radiation. In clinical practice,1H MRI is employed for imaging anatomical and physiological states via monitoring of protons in water and lipids. In order to monitor biochemical processes at the molecular level, several research groups are exploring responsive MRI agents that alter their signal upon interaction with an analyte or biological environment of interest. Fluorine (19F) MRI agents are promising due to the19F nucleus having similar magnetic resonance (MR) properties to proton and the absence of endogenous19F in living systems, resulting in no background signal. In order to make responsive19F MR agents for molecular imaging and analysis, fluorinated platforms must be developed in which their19F MR signal changes after interacting with a target analyte. A promising strategy is to use paramagnetic metals to modulate the19F MR signal by altering the relaxation rates and/or chemical shift of an appended19F imaging tag. In this concept, we provide an overview of the theoretical principles and molecular design strategies that have been exploited in the design of responsive19F MR agents, with a specific focus on agents based on small molecule paramagnetic metal ion chelates. 
    more » « less
  5. Labeled protein-based biomaterials have become popular for various biomedical applications such as tissue-engineered, therapeutic, and diagnostic scaffolds. Labeling of protein biomaterials, including with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles, has enabled a wide variety of imaging and therapeutic techniques. These USPIO-based biomaterials are widely studied in magnetic resonance imaging (MRI), thermotherapy, and magnetically-driven drug delivery, which provide a method for direct and non-invasive monitoring of implants or drug delivery agents. Where most developments have been made using polymers or collagen hydrogels, shown here is the use of a rationally designed protein as the building block for a meso-scale fiber. While USPIOs have been chemically conjugated to antibodies, glycoproteins, and tissue-engineered scaffolds for targeting or improved biocompatibility and stability, these constructs have predominantly served as diagnostic agents and often involve harsh conditions for USPIO synthesis. Here, we present an engineered protein–iron oxide hybrid material comprised of an azide-functionalized coiled-coil protein with small molecule binding capacity conjugated via bioorthogonal azide–alkyne cycloaddition to an alkyne-bearing iron oxide templating peptide, CMms6, for USPIO biomineralization under mild conditions. The coiled-coil protein, dubbed Q, has been previously shown to form nanofibers and, upon small molecule binding, further assembles into mesofibers via encapsulation and aggregation. The resulting hybrid material is capable of doxorubicin encapsulation as well as sensitive -weighted MRI darkening for strong imaging capability that is uniquely derived from a coiled-coil protein. 
    more » « less