We report a first-in-class responsive, pentafluorosulfanyl (–SF 5 )-tagged 19 F MRI agent capable of reversibly detecting reducing environments via an Fe II/III redox couple. In the Fe III form, the agent displays no 19 F MR signal due to paramagnetic relaxation enhancement-induced signal broadening; however, upon rapid reduction to Fe II with one equivalent of cysteine, the agent displays a robust 19 F signal. Successive oxidation and reduction studies validate the reversibility of the agent. The –SF 5 tag in this agent enables ‘multicolor imaging’ in conjunction with sensors containing alternative fluorinated tags and this was demonstrated via simultaneous monitoring of the 19 F MR signal of this –SF 5 agent and a hypoxia-responsive agent containing a –CF 3 group. 
                        more » 
                        « less   
                    
                            
                            Design Strategies for Responsive Fluorine‐19 Magnetic Resonance Probes Using Paramagnetic Metal Complexes
                        
                    
    
            Abstract Magnetic resonance imaging (MRI) is a powerful and widely used in vivo imaging technique that enables whole body imaging without ionizing radiation. In clinical practice,1H MRI is employed for imaging anatomical and physiological states via monitoring of protons in water and lipids. In order to monitor biochemical processes at the molecular level, several research groups are exploring responsive MRI agents that alter their signal upon interaction with an analyte or biological environment of interest. Fluorine (19F) MRI agents are promising due to the19F nucleus having similar magnetic resonance (MR) properties to proton and the absence of endogenous19F in living systems, resulting in no background signal. In order to make responsive19F MR agents for molecular imaging and analysis, fluorinated platforms must be developed in which their19F MR signal changes after interacting with a target analyte. A promising strategy is to use paramagnetic metals to modulate the19F MR signal by altering the relaxation rates and/or chemical shift of an appended19F imaging tag. In this concept, we provide an overview of the theoretical principles and molecular design strategies that have been exploited in the design of responsive19F MR agents, with a specific focus on agents based on small molecule paramagnetic metal ion chelates. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1945401
- PAR ID:
- 10401418
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Analysis & Sensing
- Volume:
- 3
- Issue:
- 2
- ISSN:
- 2629-2742
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract 19F magnetic resonance (MR) based detection coupled with well‐designed inorganic systems shows promise in biological investigations. Two proof‐of‐concept inorganic probes that exploit a novel mechanism for19F MR sensing based on converting from low‐spin (S=0) to high‐spin (S=1) Ni2+are reported. Activation of diamagneticNiL1andNiL2by light or β‐galactosidase, respectively, converts them into paramagneticNiL0, which displays a single19F NMR peak shifted by >35 ppm with accelerated relaxation rates. This spin‐state switch is effective for sensing light or enzyme expression in live cells using19F MR spectroscopy and imaging that differentiate signals based on chemical shift and relaxation times. This general inorganic scaffold has potential for developing agents that can sense analytes ranging from ions to enzymes, opening up diverse possibilities for19F MR based biosensing.more » « less
- 
            null (Ed.)We report two highly fluorinated Cu-based imaging agents, CuL1 and CuL2 , for detecting cellular hypoxia as nanoemulsion formulations. Both complexes retained their initial quenched 19 F MR signals due to paramagnetic Cu 2+ ; however, both complexes displayed a large signal increase when the complex was reduced. DLS studies showed that the CuL1 nanoemulsion ( NE CuL1 ) had a hydrodiameter of approximately 100 nm and that it was stable for four weeks post-preparation. Hypoxic cells incubated with NE CuL1 showed that 40% of the Cu 2+ taken up was reduced in low oxygen environments.more » « less
- 
            Magnetic resonance imaging (MRI) is a routinely used imaging technique in medical diagnostics. To enhance the quality of MR images, contrast agents (CAs) are used, which account for nearly 40% of MRI exams in the clinic globally. The most used CAs are gadolinium-based CAs (GBCAs) but the use of GBCAs has been linked with metal-deposition in vital organs. Gadolinium deposition has been shown to be correlated with nephrogenic systemic fibrosis, a fibrosis of the skin and internal organs. Therefore, there is an unmet need for a new CA alternative to GBCAs for T 1 -weighted Ce-MRI. Herein, we designed paramagnetic ferric iron( iii ) ion-chelated poly(lactic- co -glycolic)acid nanoparticle formulation and routinely examined their application in Ce-MRI using clinical and ultra-high-field MRI scanners. Nanoparticles were monodispersed and highly stable at physiological pH over time with the hydrodynamic size of 130 ± 12 nm and polydispersity index of 0.231 ± 0.026. The T 1 -contrast efficacy of the nanoparticles was compared with commercial agent gadopentetate dimeglumine, called Magnevist®, in aqueous phantoms in vitro and then validated in vivo by visualizing an angiographic map in a clinical MRI scanner. Relaxivities of the nanoparticles in an aqueous environment were r 1 = 10.59 ± 0.32 mmol −1 s −1 and r 1 = 3.02 ± 0.14 mmol −1 s −1 at 3.0 T and 14.1 T measured at room temperature and pH 7.4, respectively. The clinically relevant magnetic field relaxivity is three times higher compared to the Magnevist®, a clinical GBCA, signifying its potential applicability in clinical settings. Moreover, iron is an endogenous metal with known metabolic safety, and the polymer and phospholipids used in the nanoconstruct are biodegradable and biocompatible components. These properties further put the proposed T 1 agent in a promising position in contrast-enhanced MRI of patients with any disease conditions.more » « less
- 
            Abstract We have investigated the efficacy of superparamagnetic iron oxide nanoparticles (SPIONs) as positive T1contrast agents for low-field magnetic resonance imaging (MRI) at 64 millitesla (mT). Iron oxide-based agents, such as the FDA-approved ferumoxytol, were measured using a variety of techniques to evaluate T1contrast at 64 mT. Additionally, we characterized monodispersed carboxylic acid-coated SPIONs with a range of diameters (4.9–15.7 nm) in order to understand size-dependent properties of T1contrast at low-field. MRI contrast properties were measured using 64 mT MRI, magnetometry, and nuclear magnetic resonance dispersion (NMRD). We also measured MRI contrast at 3 T to provide comparison to a standard clinical field strength. SPIONs have the capacity to perform well as T1contrast agents at 64 mT, with measured longitudinal relaxivity (r1) values of up to 67 L mmol−1 s−1, more than an order of magnitude higher than corresponding r1values at 3 T. The particles exhibit size-dependent longitudinal relaxivities and outperform a commercial Gd-based agent (gadobenate dimeglumine) by more than eight-fold at physiological temperatures. Additionally, we characterize the ratio of transverse to longitudinal relaxivity, r2/r1and find that it is ~ 1 for the SPION based agents at 64 mT, indicating a favorable balance of relaxivities for T1-weighted contrast imaging. We also correlate the magnetic and structural properties of the particles with models of nanoparticle relaxivity to understand generation of T1contrast. These experiments show that SPIONs, at low fields being targeted for point-of-care low-field MRI systems, have a unique combination of magnetic and structural properties that produce large T1relaxivities.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
