skip to main content

This content will become publicly available on January 1, 2023

Title: Naturalistic Audio-Movies reveal common spatial organization across “visual” cortices of different blind individuals
Occipital cortices of different sighted people contain analogous maps of visual information (e.g. foveal vs. peripheral). In congenital blindness, “visual” cortices respond to nonvisual stimuli. Do visual cortices of different blind people represent common informational maps? We leverage naturalistic stimuli and inter-subject pattern similarity analysis to address this question. Blindfolded sighted (n = 22) and congenitally blind (n = 22) participants listened to 6 sound clips (5–7 min each): 3 auditory excerpts from movies; a naturalistic spoken narrative; and matched degraded auditory stimuli (Backwards Speech, scrambled sentences), during functional magnetic resonance imaging scanning. We compared the spatial activity patterns evoked by each unique 10-s segment of the different auditory excerpts across blind and sighted people. Segments of meaningful naturalistic stimuli produced distinctive activity patterns in frontotemporal networks that were shared across blind and across sighted individuals. In the blind group only, segment-specific, cross-subject patterns emerged in visual cortex, but only for meaningful naturalistic stimuli and not Backwards Speech. Spatial patterns of activity within visual cortices are sensitive to time-varying information in meaningful naturalistic auditory stimuli in a broadly similar manner across blind individuals.
Authors:
; ; ;
Award ID(s):
1911650
Publication Date:
NSF-PAR ID:
10319114
Journal Name:
Cerebral cortex
ISSN:
1047-3211
Sponsoring Org:
National Science Foundation
More Like this
  1. How do life experiences impact cortical function? In people who are born blind, the “visual” cortices are recruited for nonvisual tasks such as Braille reading and sound localization (e.g., Collignon et al., 2011; Sadato et al., 1996). The mechanisms of this recruitment are not known. Do visual cortices have a latent capacity to respond to nonvisual information that is equal throughout the lifespan? Alternatively, is there a sensitive period of heightened plasticity that makes visual cortex repurposing possible during childhood? To gain insight into these questions, we leveraged naturalistic auditory stimuli to quantify and compare cross-modal responses congenitally blind (CB,more »n=22), adult-onset blind (vision loss >18 years-of-age, AB, n=14) and sighted (n=22) individuals. Participants listened to auditory excerpts from movies; a spoken narrative; and matched meaningless auditory stimuli (i.e., shuffled sentences, backwards speech) during fMRI scanning. These rich naturalistic stimuli made it possible to simultaneous engage a broad range of cognitive domains. We correlated the voxel-wise timecourses of different participants within each group. For all groups, all stimulus conditions induced synchrony in auditory cortex and for all groups only the narrative stimuli synchronized responses in higher-cognitive fronto-parietal and temporal regions. Inter-subject synchrony in visual cortices was high in the CB group for the movie and narrative stimuli but not for meaningless auditory controls. In contrast, visual cortex synchrony was equally low among AB and sighted blindfolded participants. Even many years of blindness in adulthood fail to enable responses to naturalistic auditory information in visual cortices of people who had sight as children. These findings suggest that cross-modal responses in visual cortex of people born blind reflect the plasticity of developing visual cortex during a sensitive period.« less
  2. Naturalistic stimuli, such as movies, activate a substantial portion of the human brain, invoking a response shared across individuals. Encoding models that predict neural responses to arbitrary stimuli can be very useful for studying brain function. However, existing models focus on limited aspects of naturalistic stimuli, ignoring the dynamic interactions of modalities in this inherently context-rich paradigm. Using movie-watching data from the Human Connectome Project, we build group-level models of neural activity that incorporate several inductive biases about neural information processing, including hierarchical processing, temporal assimilation, and auditory-visual interactions. We demonstrate how incorporating these biases leads to remarkable prediction performancemore »across large areas of the cortex, beyond the sensory-specific cortices into multisensory sites and frontal cortex. Furthermore, we illustrate that encoding models learn high-level concepts that generalize to task-bound paradigms. Together, our findings underscore the potential of encoding models as powerful tools for studying brain function in ecologically valid conditions.« less
  3. Texting relies on screen-centric prompts designed for sighted users, still posing significant barriers to people who are blind and visually impaired (BVI). Can we re-imagine texting untethered from a visual display? In an interview study, 20 BVI adults shared situations surrounding their texting practices, recurrent topics of conversations, and challenges. Informed by these insights, we introduce TextFlow: a mixed-initiative context-aware system that generates entirely auditory message options relevant to the users’ location, activity, and time of the day. Users can browse and select suggested aural messages using finger-taps supported by an off-the-shelf finger-worn device, without having to hold or attendmore »to a mobile screen. In an evaluative study, 10 BVI participants successfully interacted with TextFlow to browse and send messages in screen-free mode. The experiential response of the users shed light on the importance of bypassing the phone and accessing rapidly controllable messages at their fingertips while preserving privacy and accuracy with respect to speech or screen-based input. We discuss how non-visual access to proactive, contextual messaging can support the blind in a variety of daily scenarios.« less
  4. Decoding auditory stimulus from neural activity can enable neuroprosthetics and direct communication with the brain. Some recent studies have shown successful speech decoding from intracranial recording using deep learning models. However, scarcity of training data leads to low quality speech reconstruction which prevents a complete brain-computer-interface (BCI) application. In this work, we propose a transfer learning approach with a pre-trained GAN to disentangle representation and generation layers for decoding. We first pre-train a generator to produce spectrograms from a representation space using a large corpus of natural speech data. With a small amount of paired data containing the stimulus speechmore »and corresponding ECoG signals, we then transfer it to a bigger network with an encoder attached before, which maps the neural signal to the representation space. To further improve the network generalization ability, we introduce a Gaussian prior distribution regularizer on the latent representation during the transfer phase. With at most 150 training samples for each tested subject, we achieve a state-of-the-art decoding performance. By visualizing the attention mask embedded in the encoder, we observe brain dynamics that are consistent with findings from previous studies investigating dynamics in the superior temporal gyrus (STG), pre-central gyrus (motor) and inferior frontal gyrus (IFG). Our findings demonstrate a high reconstruction accuracy using deep learning networks together with the potential to elucidate interactions across different brain regions during a cognitive task.« less
  5. Abstract Working memory (WM) supports the persistent representation of transient sensory information. Visual and auditory stimuli place different demands on WM and recruit different brain networks. Separate auditory- and visual-biased WM networks extend into the frontal lobes, but several challenges confront attempts to parcellate human frontal cortex, including fine-grained organization and between-subject variability. Here, we use differential intrinsic functional connectivity from 2 visual-biased and 2 auditory-biased frontal structures to identify additional candidate sensory-biased regions in frontal cortex. We then examine direct contrasts of task functional magnetic resonance imaging during visual versus auditory 2-back WM to validate those candidate regions. Threemore »visual-biased and 5 auditory-biased regions are robustly activated bilaterally in the frontal lobes of individual subjects (N = 14, 7 women). These regions exhibit a sensory preference during passive exposure to task stimuli, and that preference is stronger during WM. Hierarchical clustering analysis of intrinsic connectivity among novel and previously identified bilateral sensory-biased regions confirms that they functionally segregate into visual and auditory networks, even though the networks are anatomically interdigitated. We also observe that the frontotemporal auditory WM network is highly selective and exhibits strong functional connectivity to structures serving non-WM functions, while the frontoparietal visual WM network hierarchically merges into the multiple-demand cognitive system.« less