skip to main content


Title: Naturalistic stimuli reveal a critical period in visual cortex development: Evidence from adult-onset blindness
How do life experiences impact cortical function? In people who are born blind, the “visual” cortices are recruited for nonvisual tasks such as Braille reading and sound localization (e.g., Collignon et al., 2011; Sadato et al., 1996). The mechanisms of this recruitment are not known. Do visual cortices have a latent capacity to respond to nonvisual information that is equal throughout the lifespan? Alternatively, is there a sensitive period of heightened plasticity that makes visual cortex repurposing possible during childhood? To gain insight into these questions, we leveraged naturalistic auditory stimuli to quantify and compare cross-modal responses congenitally blind (CB, n=22), adult-onset blind (vision loss >18 years-of-age, AB, n=14) and sighted (n=22) individuals. Participants listened to auditory excerpts from movies; a spoken narrative; and matched meaningless auditory stimuli (i.e., shuffled sentences, backwards speech) during fMRI scanning. These rich naturalistic stimuli made it possible to simultaneous engage a broad range of cognitive domains. We correlated the voxel-wise timecourses of different participants within each group. For all groups, all stimulus conditions induced synchrony in auditory cortex and for all groups only the narrative stimuli synchronized responses in higher-cognitive fronto-parietal and temporal regions. Inter-subject synchrony in visual cortices was high in the CB group for the movie and narrative stimuli but not for meaningless auditory controls. In contrast, visual cortex synchrony was equally low among AB and sighted blindfolded participants. Even many years of blindness in adulthood fail to enable responses to naturalistic auditory information in visual cortices of people who had sight as children. These findings suggest that cross-modal responses in visual cortex of people born blind reflect the plasticity of developing visual cortex during a sensitive period.  more » « less
Award ID(s):
1911650
NSF-PAR ID:
10319115
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
bioRxiv
ISSN:
2692-8205
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Occipital cortices of different sighted people contain analogous maps of visual information (e.g. foveal vs. peripheral). In congenital blindness, “visual” cortices respond to nonvisual stimuli. Do visual cortices of different blind people represent common informational maps? We leverage naturalistic stimuli and inter-subject pattern similarity analysis to address this question. Blindfolded sighted (n = 22) and congenitally blind (n = 22) participants listened to 6 sound clips (5–7 min each): 3 auditory excerpts from movies; a naturalistic spoken narrative; and matched degraded auditory stimuli (Backwards Speech, scrambled sentences), during functional magnetic resonance imaging scanning. We compared the spatial activity patterns evoked by each unique 10-s segment of the different auditory excerpts across blind and sighted people. Segments of meaningful naturalistic stimuli produced distinctive activity patterns in frontotemporal networks that were shared across blind and across sighted individuals. In the blind group only, segment-specific, cross-subject patterns emerged in visual cortex, but only for meaningful naturalistic stimuli and not Backwards Speech. Spatial patterns of activity within visual cortices are sensitive to time-varying information in meaningful naturalistic auditory stimuli in a broadly similar manner across blind individuals.

     
    more » « less
  2. null (Ed.)
    In order to better understand how our visual system processes information, we must understand the underlying brain connectivity architecture, and how it can get reorganized under visual deprivation. The full extent to which visual development and visual loss affect connectivity is not well known. To investigate the effect of the onset of blindness on structural connectivity both at the whole-brain voxel-wise level and at the level of all major whitematter tracts, we applied two complementary Diffusion-Tension Imaging (DTI) methods, TBSS and AFQ. Diffusion-weighted brain images were collected from three groups of participants: congenitally blind (CB), acquired blind (AB), and fully sighted controls. The differences between these groups were evaluated on a voxel-wise scale with Tract-Based Spatial Statistics (TBSS) method, and on larger-scale with Automated Fiber Quantification (AFQ), a method that allows for between-group comparisons at the level of the major fiber tracts. TBSS revealed that both blind groups tended to have higher FA than sighted controls in the central structures of the brain. AFQ revealed that, where the three groups differed, congenitally blind participants tended to be more similar to sighted controls than to those participants who had acquired blindness later in life. These differences were specifically manifested in the left uncinated fasciculus, the right corticospinal fasciculus, and the left superior longitudinal fasciculus, areas broadly associated with a range of higher-level cognitive systems. 
    more » « less
  3. Activity-dependent neuronal plasticity is crucial for animals to adapt to dynamic sensory environments. Traditionally, it has been investigated using deprivation approaches in animal models primarily in sensory cortices. Nevertheless, emerging evidence emphasizes its significance in sensory organs and in sub-cortical regions where cranial nerves relay information to the brain. Additionally, critical questions started to arise. Do different sensory modalities share common cellular mechanisms for deprivation-induced plasticity at these central entry-points? Does the deprivation duration correlate with specific plasticity mechanisms?

    This study systematically reviews and meta-analyses research papers that investigated visual, auditory, or olfactory deprivation in rodents of both sexes. It examines the consequences of sensory deprivation in homologous regions at the first central synapse following cranial nerve transmission (vision-lateral geniculate nucleus and superior colliculus; audition-ventral and dorsal cochlear nucleus; olfaction-olfactory bulb). The systematic search yielded 91 papers (39 vision, 22 audition, 30 olfaction), revealing substantial heterogeneity in publication trends, experimental methods, measures of plasticity, and reporting across the sensory modalities. Despite these differences, commonalities emerged when correlating plasticity mechanisms with the duration of sensory deprivation. Short-term deprivation (up to 1 day) reduced activity and increased disinhibition, medium-term deprivation (1 day to a week) involved glial changes and synaptic remodelling, and long-term deprivation (over a week) primarily led to structural alterations.

    These findings underscore the importance of standardizing methodologies and reporting practices. Additionally, they highlight the value of cross-modals synthesis for understanding how the nervous system, including peripheral, pre-cortical, and cortical areas, respond to and compensate for sensory inputs loss.

    Significance StatementThis study addresses the critical issue of sensory loss and its impact on the brain's adaptability, shedding light on how different sensory systems respond to loss of inputs from the environment. While past research has primarily explored early-life sensory deprivation, this study focuses on the effects of sensory loss in post-weaning rodents. By systematically reviewing 91 research articles, the findings reveal distinct responses based on the duration of sensory deprivation. This research not only enhances our understanding of brain plasticity but also has broad implications for translational applications, particularly in cross-modal plasticity, offering valuable insights into neuroscientific research and potential clinical interventions.

     
    more » « less
  4. Advances in artificial intelligence have inspired a paradigm shift in human neuroscience, yielding large-scale functional magnetic resonance imaging (fMRI) datasets that provide high-resolution brain responses to thousands of naturalistic visual stimuli. Because such experiments necessarily involve brief stimulus durations and few repetitions of each stimulus, achieving sufficient signal-to-noise ratio can be a major challenge. We address this challenge by introducing GLMsingle , a scalable, user-friendly toolbox available in MATLAB and Python that enables accurate estimation of single-trial fMRI responses ( glmsingle.org ). Requiring only fMRI time-series data and a design matrix as inputs, GLMsingle integrates three techniques for improving the accuracy of trial-wise general linear model (GLM) beta estimates. First, for each voxel, a custom hemodynamic response function (HRF) is identified from a library of candidate functions. Second, cross-validation is used to derive a set of noise regressors from voxels unrelated to the experiment. Third, to improve the stability of beta estimates for closely spaced trials, betas are regularized on a voxel-wise basis using ridge regression. Applying GLMsingle to the Natural Scenes Dataset and BOLD5000, we find that GLMsingle substantially improves the reliability of beta estimates across visually-responsive cortex in all subjects. Comparable improvements in reliability are also observed in a smaller-scale auditory dataset from the StudyForrest experiment. These improvements translate into tangible benefits for higher-level analyses relevant to systems and cognitive neuroscience. We demonstrate that GLMsingle: (i) helps decorrelate response estimates between trials nearby in time; (ii) enhances representational similarity between subjects within and across datasets; and (iii) boosts one-versus-many decoding of visual stimuli. GLMsingle is a publicly available tool that can significantly improve the quality of past, present, and future neuroimaging datasets sampling brain activity across many experimental conditions. 
    more » « less
  5. Prior research points to a positive concurrent relationship between reasoning ability and both frontoparietal structural connectivity (SC) as measured by diffusion tensor imaging (Tamnes et al., 2010) and frontoparietal functional connectivity (FC) as measured by fMRI (Cocchi et al., 2014). Further, recent research demonstrates a link between reasoning ability and FC of two brain regions in particular: rostrolateral prefrontal cortex (RLPFC) and the inferior parietal lobe (IPL) (Wendelken et al., 2016). Here, we sought to investigate the concurrent and dynamic, lead-lag relationships among frontoparietal SC, FC, and reasoning ability in humans. To this end, we combined three longitudinal developmental datasets with behavioral and neuroimaging data from 523 male and female participants between 6 and 22 years of age. Cross-sectionally, reasoning ability was most strongly related to FC between RLPFC and IPL in adolescents and adults, but to frontoparietal SC in children. Longitudinal analysis revealed that RLPFC-IPL SC, but not FC, was a positive predictor of future changes in reasoning ability. Moreover, we found that RLPFC-IPL SC at one time point positively predicted future changes in RLPFC-IPL FC, whereas, in contrast, FC did not predict future changes in SC. Our results demonstrate the importance of strong white matter connectivity between RLPFC and IPL during middle childhood for the subsequent development of both robust FC and good reasoning ability.SIGNIFICANCE STATEMENT The human capacity for reasoning develops substantially during childhood and has a profound impact on achievement in school and in cognitively challenging careers. Reasoning ability depends on communication between lateral prefrontal and parietal cortices. Therefore, to understand how this capacity develops, we examined the dynamic relationships over time among white matter tracts connecting frontoparietal cortices (i.e., structural connectivity, SC), coordinated frontoparietal activation (functional connectivity, FC), and reasoning ability in a large longitudinal sample of subjects 6-22 years of age. We found that greater frontoparietal SC in childhood predicts future increases in both FC and reasoning ability, demonstrating the importance of white matter development during childhood for subsequent brain and cognitive functioning. 
    more » « less