skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Naturalistic Audio-Movies reveal common spatial organization across “visual” cortices of different blind individuals
Abstract Occipital cortices of different sighted people contain analogous maps of visual information (e.g. foveal vs. peripheral). In congenital blindness, “visual” cortices respond to nonvisual stimuli. Do visual cortices of different blind people represent common informational maps? We leverage naturalistic stimuli and inter-subject pattern similarity analysis to address this question. Blindfolded sighted (n = 22) and congenitally blind (n = 22) participants listened to 6 sound clips (5–7 min each): 3 auditory excerpts from movies; a naturalistic spoken narrative; and matched degraded auditory stimuli (Backwards Speech, scrambled sentences), during functional magnetic resonance imaging scanning. We compared the spatial activity patterns evoked by each unique 10-s segment of the different auditory excerpts across blind and sighted people. Segments of meaningful naturalistic stimuli produced distinctive activity patterns in frontotemporal networks that were shared across blind and across sighted individuals. In the blind group only, segment-specific, cross-subject patterns emerged in visual cortex, but only for meaningful naturalistic stimuli and not Backwards Speech. Spatial patterns of activity within visual cortices are sensitive to time-varying information in meaningful naturalistic auditory stimuli in a broadly similar manner across blind individuals.  more » « less
Award ID(s):
1911650
PAR ID:
10363148
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Cerebral Cortex
Volume:
33
Issue:
1
ISSN:
1047-3211
Page Range / eLocation ID:
p. 1-10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. How do life experiences impact cortical function? In people who are born blind, the “visual” cortices are recruited for nonvisual tasks such as Braille reading and sound localization (e.g., Collignon et al., 2011; Sadato et al., 1996). The mechanisms of this recruitment are not known. Do visual cortices have a latent capacity to respond to nonvisual information that is equal throughout the lifespan? Alternatively, is there a sensitive period of heightened plasticity that makes visual cortex repurposing possible during childhood? To gain insight into these questions, we leveraged naturalistic auditory stimuli to quantify and compare cross-modal responses congenitally blind (CB, n=22), adult-onset blind (vision loss >18 years-of-age, AB, n=14) and sighted (n=22) individuals. Participants listened to auditory excerpts from movies; a spoken narrative; and matched meaningless auditory stimuli (i.e., shuffled sentences, backwards speech) during fMRI scanning. These rich naturalistic stimuli made it possible to simultaneous engage a broad range of cognitive domains. We correlated the voxel-wise timecourses of different participants within each group. For all groups, all stimulus conditions induced synchrony in auditory cortex and for all groups only the narrative stimuli synchronized responses in higher-cognitive fronto-parietal and temporal regions. Inter-subject synchrony in visual cortices was high in the CB group for the movie and narrative stimuli but not for meaningless auditory controls. In contrast, visual cortex synchrony was equally low among AB and sighted blindfolded participants. Even many years of blindness in adulthood fail to enable responses to naturalistic auditory information in visual cortices of people who had sight as children. These findings suggest that cross-modal responses in visual cortex of people born blind reflect the plasticity of developing visual cortex during a sensitive period. 
    more » « less
  2. We compared everyday language input to young congenitally-blind children with no addi- tional disabilities (N=15, 6–30 mo., M:16 mo.) and demographically-matched sighted peers (N=15, 6–31 mo., M:16 mo.). By studying whether the language input of blind children differs from their sighted peers, we aimed to determine whether, in principle, the language acquisition patterns observed in blind and sighted children could be explained by aspects of the speech they hear. Children wore LENA recorders to capture the auditory language environment in their homes. Speech in these recordings was then analyzed with a mix of automated and manually-transcribed measures across various subsets and dimensions of language input. These included measures of quantity (adult words), interaction (conversational turns and child-directed speech), linguistic properties (lexical diversity and mean length of utterance), and conceptual features (talk centered around the here-and-now; talk focused on visual referents that would be inaccessible to the blind but not sighted children). Overall, we found broad similarity across groups in speech quantitative, interactive, and linguistic properties. The only exception was that blind children’s language environments contained slightly but significantly more talk about past/future/hypothetical events than sighted children’s input; both groups received equiva- lent quantities of “visual” speech input. The findings challenge the notion that blind children’s lan- guage input diverges substantially from sighted children’s; while the input is highly variable across children, it is not systematically so across groups, across nearly all measures. The findings suggest instead that blind children and sighted children alike receive input that readily supports their language development, with open questions remaining regarding how this input may be differentially leveraged by language learners in early childhood. 
    more » « less
  3. Abstract We present an experimental investigation of spatial audio feedback using smartphones to support direction localization in pointing tasks for people with visual impairments (PVIs). We do this using a mobile game based on a bow-and-arrow metaphor. Our game provides a combination of spatial and non-spatial (sound beacon) audio to help the user locate the direction of the target. Our experiments with sighted, sighted-blindfolded, and visually impaired users shows that (a) the efficacy of spatial audio is relatively higher for PVIs than for blindfolded sighted users during the initial reaction time for direction localization, (b) the general behavior between PVIs and blind-folded individuals is statistically similar, and (c) the lack of spatial audio significantly reduces the localization performance even in sighted blind-folded users. Based on our findings, we discuss the system and interaction design implications for making future mobile-based spatial interactions accessible to PVIs. 
    more » « less
  4. Texting relies on screen-centric prompts designed for sighted users, still posing significant barriers to people who are blind and visually impaired (BVI). Can we re-imagine texting untethered from a visual display? In an interview study, 20 BVI adults shared situations surrounding their texting practices, recurrent topics of conversations, and challenges. Informed by these insights, we introduce TextFlow : a mixed-initiative context-aware system that generates entirely auditory message options relevant to the users’ location, activity, and time of the day. Users can browse and select suggested aural messages using finger-taps supported by an off-the-shelf finger-worn device, without having to hold or attend to a mobile screen. In an evaluative study, 10 BVI participants successfully interacted with TextFlow to browse and send messages in screen-free mode. The experiential response of the users shed light on the importance of bypassing the phone and accessing rapidly controllable messages at their fingertips while preserving privacy and accuracy with respect to speech or screen-based input. We discuss how non-visual access to proactive, contextual messaging can support the blind in a variety of daily scenarios. 
    more » « less
  5. null (Ed.)
    Texting relies on screen-centric prompts designed for sighted users, still posing significant barriers to people who are blind and visually impaired (BVI). Can we re-imagine texting untethered from a visual display? In an interview study, 20 BVI adults shared situations surrounding their texting practices, recurrent topics of conversations, and challenges. Informed by these insights, we introduce TextFlow: a mixed-initiative context-aware system that generates entirely auditory message options relevant to the users’ location, activity, and time of the day. Users can browse and select suggested aural messages using finger-taps supported by an off-the-shelf finger-worn device, without having to hold or attend to a mobile screen. In an evaluative study, 10 BVI participants successfully interacted with TextFlow to browse and send messages in screen-free mode. The experiential response of the users shed light on the importance of bypassing the phone and accessing rapidly controllable messages at their fingertips while preserving privacy and accuracy with respect to speech or screen-based input. We discuss how non-visual access to proactive, contextual messaging can support the blind in a variety of daily scenarios. 
    more » « less