skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatiotemporal Changes of Winter Wheat Planted and Harvested Areas, Photosynthesis and Grain Production in the Contiguous United States from 2008–2018
Winter wheat is a main cereal crop grown in the United States of America (USA), and the USA is the third largest wheat exporter globally. Timely and reliable in-season forecast and year-end estimation of winter wheat grain production in the USA are needed for regional and global food security. In this study, we assessed the consistency between the agricultural statistical reports and satellite-based data for winter wheat over the contiguous US (CONUS) at both the county and national scales. First, we compared the planted area estimates from the National Agricultural Statistics Service (NASS) and the Cropland Data Layer (CDL) from 2008–2018. Second, we investigated the relationship between gross primary production (GPP) estimated by the vegetation photosynthesis model (VPM) and grain production from the NASS. Lastly, we explored the in-season utility of GPPVPM in monitoring seasonal production. Strong spatiotemporal consistency of planted areas was found between the NASS and CDL datasets. However, in the Southern Great Plains, both the CDL and NASS planted acreage were noticeable larger (>20%) than the NASS harvested area, where some winter wheat fields were used as forage for cattle grazing. County-level GPPVPM was linearly related with grain production of winter wheat, with an R2 value of 0.68 across the CONUS. The relationships between grain production and GPPVPM in those counties without a substantial difference (<20%) between planted and harvested area were much stronger and their harvest index (HIGPP) values ranged from 0.2–0.3. GPPVPM in May could explain about 70–90% of the variance of winter wheat grain production. Our findings highlight the potential of GPPVPM in winter wheat monitoring, especially for those high harvested/planted ratio, which could provide useful data to guide planning and marketing for decision makers, stakeholders, and the public.  more » « less
Award ID(s):
1946093
PAR ID:
10319120
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
13
Issue:
9
ISSN:
2072-4292
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The United States of America ranked first in maize export and second in soybean export in the world. Accurate and timely data and information on maize and soybean production in the Contiguous United States (CONUS) are important for food security at the regional and global scales. In this study, we firstly compare the maize and soybean planted area from cropland data layer (CDL) with NASS area statistics over the CONUS during 2008-2018, and evaluate the interannual changes of planted and harvested area based on the two datasets. Secondly, we investigate the relationship between grain production and gross primary production (GPP) simulated by Vegetation Photosynthesis Model (VPM) at national and county scales. Finally, we evaluate the linear regression models between grain production and cumulated GPPVPM over time at 8-day resolution. We found strong spatial-temporal consistency between CDL and NASS datasets in maize and soybean planted areas. Maize and soybean planted areas increased by mid-2010s, largely driven by markets and international trade. Severe summer drought in 2012 had little impact on soybean planted and harvested area and maize planted area, but substantially reduced maize harvested area. and grain production. Annual county-level GPPVPM had strong linear relationship with NASS grain production for maize and soybean. The Harvest Index, defined as the ratio between grain production and GPPVPM (HIGPP_VPM), ranged from 0.25 (2012) to 0.36 for maize and from 0.13 to 0.15 for soybean. The linear regression models between grain production and cumulated GPPVPM (GPPVPM_CUM) over time at 8-day resolution showed that by the end of July, GPPVPM_CUM accounted for ~90% of variance in maize and soybean grain production, which was approximately two months before farmers started to harvest. This study clearly shows that VPM and GPPVPM data are useful for monitoring and in-season forecasting of maize and soybean grain production in the CONUS. 
    more » « less
  2. It is still a challenge to generate the timely crop cover map at large geographic area due to the lack of reliable ground truths at early growing season. This paper introduces an efficient method to extract “trusted pixels” from the historical Cropland Data Layer (CDL) data using crop rotation patterns, which can be used to replace the actual ground truth in the crop mapping and other agricultural applications. A case study in the Nebraska state of USA is demonstrated. The common crop rotation patterns of four major crop types, corn, soybeans, winter wheat, and alfalfa, are compared and analyzed. The experiment results show a considerable number of pixels in CDL following the certain crop sequence during the past decade. Each observed crop type has at least one reliable crop rotation pattern. Based on the reliable crop rotation patterns, a great proportion of pixels can be correctly mapped a year ahead of the release of current-year CDL product. These trusted pixels can be potentially used to label training samples for crop type classification at early growing season. 
    more » « less
  3. The National Agricultural Statistics Service, the statistical arm of the US Department of Agriculture, and the Multi-Resolution Land Characteristics Consortium, a group of the US federal agencies, collect and publish several land-use and land-cover data sets. The aim of this study is to analyze the consistency of forestland estimates based on two widely used, publicly available products: the National Land-Cover Database (NLCD) and Cropland Data Layer (CDL). Both remote-sensing-based products provide raster-formatted land-cover categorization at a spatial resolution of 30 m. Although the processing of the yearly published CDL non-agricultural land-cover data is based on less frequently updated NLCD, the consistency of large-area forestland mapping between these two datasets has not been assessed. To assess the similarities and the differences between CDL- and NLCD-based forestland mappings for the state of North Carolina, we overlay the two data products for the years 2011 and 2016 in ArcMap 10.5.1 and analyze the location and attributes of the matched and mismatched forestland. We find that the mismatch is relatively smaller for the areas of the state where forests occupy larger shares of the total land, and that the relative mismatch is smaller in 2011 when compared to 2016. We also find that a large portion of the forestland mismatch is attributable to the dynamics of re-growth of periodically harvested and otherwise disturbed forests. Our results underscore the need for a holistic approach to data preparation, data attribution, and data accuracy when performing high-scale map-based analyses using each of these products. 
    more » « less
  4. The possible influence of global climate changes on agricultural production is becoming increasingly significant, necessitating greater attention to improving agricultural production in response to temperature rises and precipitation variability. As one of the main winter wheat-producing areas in China, the temporal and spatial distribution characteristics of precipitation, accumulated temperature, and actual yield and climatic yield of winter wheat during the growing period in Shanxi Province were analysed in detail. With the utilisation of daily meteorological data collected from 12 meteorological stations in Shanxi Province in 1964–2018, our study analysed the change in winter wheat yield with climate change using GIS combined with wavelet analysis. The results show the following: (1) Accumulated temperature and precipitation are the two most important limiting factors among the main physical factors that impact yield. Based on the analysis of the ArcGIS geographical detector, the correlation between the actual yield of winter wheat and the precipitation during the growth period was the highest, reaching 0.469, and the meteorological yield and accumulated temperature during this period also reached its peak value of 0.376. (2) The regions with more suitable precipitation and accumulated temperature during the growth period of winter wheat in the study area had relatively high actual winter wheat yields. Overall, the average actual yield of the entire region showed a significant increasing trend over time, with an upward trend of 47.827 kg ha−1 yr−1. (3) The variation coefficient of winter wheat climatic yield was relatively stable in 2008–2018. In particular, there were many years of continuous reduction in winter wheat yields prior to 2006. Thereafter, the impact of climate change on winter wheat yields became smaller. This study expands our understanding of the complex interactions between climate variables and crop yield but also provides practical recommendations for enhancing agricultural practices in this region 
    more » « less
  5. The Cropland Data Layer (CDL) is currently the only subfield level high resolution crop-specific land cover data product over the entire conterminous United States (CONUS). It has been widely used in agricultural industry, business decision support, research, and education worldwide. However, CDL data has its limitations. It is an end-of-season land cover map which is not available within growing season. Moreover, CDLs in early years have many misclassified pixels (relatively low accuracy) due to cloud cover and lack of satellite images. This paper will present the studies of using machine learning technique to address these issues in CDL data. Specifically, we will present the design and implementation of a machine learning model for agro-geoinformation discovery from CDL. Several application scenarios of the proposed model, including prediction of crop cover, crop acreage estimation, in-season crop mapping, and refinement of the earlyyear CDL data, are demonstrated and discussed. 
    more » « less