skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Estimating data-driven coronavirus disease 2019 mitigation strategies for safe university reopening
After one pandemic year of remote or hybrid instructional modes, universities struggled with plans for an in-person autumn (fall) semester in 2021. To help inform university reopening policies, we collected survey data on social contact patterns and developed an agent-based model to simulate the spread of severe acute respiratory syndrome coronavirus 2 in university settings. Considering a reproduction number of R 0 = 3 and 70% immunization effectiveness, we estimated that at least 80% of the university population immunized through natural infection or vaccination is needed for safe university reopening with relaxed non-pharmaceutical interventions (NPIs). By contrast, at least 60% of the university population immunized through natural infection or vaccination is needed for safe university reopening when NPIs are adopted. Nevertheless, attention needs to be paid to large-gathering events that could lead to infection size spikes. At an immunization coverage of 70%, continuing NPIs, such as wearing masks, could lead to a 78.39% reduction in the maximum cumulative infections and a 67.59% reduction in the median cumulative infections. However, even though this reduction is very beneficial, there is still a possibility of non-negligible size outbreaks because the maximum cumulative infection size is equal to 1.61% of the population, which is substantial.  more » « less
Award ID(s):
2027336
PAR ID:
10319143
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of The Royal Society Interface
Volume:
19
Issue:
188
ISSN:
1742-5662
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background Measles is among the most highly infectious human diseases. By virtue of increasingly effective childhood vaccination, together with targeted supplemental immunization activities (SIAs), health authorities in the People’s Republic of China have reduced measles’ reproduction number from about 18 to 2.3. Despite substantial residual susceptibility among young adults, more in some locales than others, sustained routine childhood immunization likely would eliminate measles eventually. To support global eradication efforts, as well as expedite morbidity and mortality reductions in China, we evaluated alternative SIAs via mechanistic mathematical modelling. Methods Our model Chinese population is stratified by immune status (susceptible to measles infection; infected, but not yet infectious; infectious; and recovered or immunized), age (0, 1–4, 5–9, …, 65+ years) and location (31 provinces). Contacts between sub-populations are either empirical or a mixture of preferential and proportionate with respect to age and decline exponentially with distance between locations at age-dependent rates. We estimated initial conditions and most parameters from recent cross-sectional serological surveys, disease surveillance and demographic observations. Then we calculated the reproduction numbers and gradient of the effective number with respect to age- and location-specific immunization rates. We corroborated these analytical results by simulating adolescent and young adult SIAs using a version of our model in which the age-specific contact rates vary seasonally. Results Whereas the gradient indicates that vaccinating young adults generally is the optimal strategy, simulations indicate that a catch-up campaign among susceptible adolescent schoolchildren would accelerate elimination, with timing dependent on uptake. Conclusions These results are largely due to indirect effects (i.e. fewer infections than immunized people might otherwise cause), which meta-population models with realistic mixing are uniquely capable of reproducing accurately. 
    more » « less
  2. Abstract The rapid rollout of the COVID-19 vaccine raises the question of whether and when the ongoing pandemic could be eliminated with vaccination and non-pharmaceutical interventions (NPIs). Despite advances in the impact of NPIs and the conceptual belief that NPIs and vaccination control COVID-19 infections, we lack evidence to employ control theory in real-world social human dynamics in the context of disease spreading. We bridge the gap by developing a new analytical framework that treats COVID-19 as a feedback control system with the NPIs and vaccination as the controllers and a computational model that maps human social behaviors into input signals. This approach enables us to effectively predict the epidemic spreading in 381 Metropolitan statistical areas (MSAs) in the US by learning our model parameters utilizing the time series NPIs (i.e., the stay-at-home order, face-mask wearing, and testing) data. This model allows us to optimally identify three NPIs to predict infections accurately in 381 MSAs and avoid over-fitting. Our numerical results demonstrate our approach’s excellent predictive power with R 2  > 0.9 for all the MSAs regardless of their sizes, locations, and demographic status. Our methodology allows us to estimate the needed vaccine coverage and NPIs for achieving R e to a manageable level and how the variants of concern diminish the likelihood for disease elimination at each location. Our analytical results provide insights into the debates surrounding the elimination of COVID-19. NPIs, if tailored to the MSAs, can drive the pandemic to an easily containable level and suppress future recurrences of epidemic cycles. 
    more » « less
  3. Abstract BackgroundNon-pharmaceutical interventions (NPIs) have been implemented worldwide to curb COVID-19 spread. Belarus is a rare case of a country with a relatively modern healthcare system, where highly limited NPIs have been enacted. Thus, investigation of Belarusian COVID-19 dynamics is essential for the local and global assessment of the impact of NPI strategies. MethodsWe integrate genomic epidemiology and surveillance methods to investigate the spread of SARS-CoV-2 in Belarus in 2020. We utilize phylodynamics, phylogeography, and probabilistic bias inference to study the virus import and export routes, the dynamics of the effective reproduction number, and the incidence of SARS-CoV-2 infection. ResultsHere we show that the estimated cumulative number of infections by June 2020 exceeds the confirmed case number by a factor of ~4 (95% confidence interval (2; 9)). Intra-country SARS-CoV-2 genomic diversity originates from at least 18 introductions from different regions, with a high proportion of regional transmissions. Phylodynamic analysis indicates a moderate reduction of the effective reproductive number after the introduction of limited NPIs, but its magnitude is lower than for developed countries with large-scale NPIs. On the other hand, the effective reproduction number estimate is comparable with that for the neighboring Ukraine, where NPIs were broader. ConclusionsThe example of Belarus demonstrates how countries with relatively low outward population mobility continue to be integral parts of the global epidemiological environment. Comparison of the effective reproduction number dynamics for Belarus and other countries reveals the effect of different NPI strategies but also emphasizes the role of regional Eastern European sociodemographic factors in the virus spread. 
    more » « less
  4. Khudyakov, Yury E (Ed.)
    We construct an agent-based SEIR model to simulate COVID-19 spread at a 16000-student mostly non-residential urban university during the Fall 2021 Semester. We find that mRNA vaccine coverage at 100% combined with weekly screening testing of 25% of the campus population make it possible to safely reopen to in-person instruction. Our simulations exhibit a right-skew for total infections over the semester that becomes more pronounced with less vaccine coverage, less vaccine effectiveness and no additional preventative measures. This suggests that high levels of infection are not exceedingly rare with campus social connections the main transmission route. Finally, we find that if vaccine coverage is 100% and vaccine effectiveness is above 80%, then a safe reopening is possible even without facemask use. This models possible future scenarios with high coverage of additional “booster” doses of COVID-19 vaccines. 
    more » « less
  5. Gallos, Lazaros K. (Ed.)
    We develop an agent-based model on a network meant to capture features unique to COVID-19 spread through a small residential college. We find that a safe reopening requires strong policy from administrators combined with cautious behavior from students. Strong policy includes weekly screening tests with quick turnaround and halving the campus population. Cautious behavior from students means wearing facemasks, socializing less, and showing up for COVID-19 testing. We also find that comprehensive testing and facemasks are the most effective single interventions, building closures can lead to infection spikes in other areas depending on student behavior, and faster return of test results significantly reduces total infections. 
    more » « less