IntroductionImmunotherapies have shown great promise, but are not effective for all tumors types and are effective in less than 3% of patients with pancreatic ductal adenocarcinomas (PDAC). To make an immune treatment that is effective for more cancer patients and those with PDAC specifically, we genetically engineered Salmonella to deliver exogenous antigens directly into the cytoplasm of tumor cells. We hypothesized that intracellular delivery of an exogenous immunization antigen would activate antigen-specific CD8 T cells and reduce tumors in immunized mice. MethodsTo test this hypothesis, we administered intracellular delivering (ID) Salmonella that deliver ovalbumin as a model antigen into tumor-bearing, ovalbumin-vaccinated mice. ID Salmonella delivers antigens by autonomously lysing in cells after the induction of cell invasion. ResultsWe showed that the delivered ovalbumin disperses throughout the cytoplasm of cells in culture and in tumors. This delivery into the cytoplasm is essential for antigen cross-presentation. We showed that co-culture of ovalbumin-recipient cancer cells with ovalbumin-specific CD8 T cells triggered a cytotoxic T cell response. After the adoptive transfer of OT-I CD8 T cells, intracellular delivery of ovalbumin reduced tumor growth and eliminated tumors. This effect was dependent on the presence of the ovalbumin-specific T cells. Following vaccination with the exogenous antigen in mice, intracellular delivery of the antigen cleared 43% of established KPC pancreatic tumors, increased survival, and prevented tumor re-implantation. DiscussionThis response in the immunosuppressive KPC model demonstrates the potential to treat tumors that do not respond to checkpoint inhibitors, and the response to re-challenge indicates that new immunity was established against intrinsic tumor antigens. In the clinic, ID Salmonella could be used to deliver a protein antigen from a childhood immunization to refocus pre-existing T cell immunity against tumors. As an off-the-shelf immunotherapy, this bacterial system has the potential to be effective in a broad range of cancer patients.
more »
« less
Evaluating vaccination policies to accelerate measles elimination in China: a meta-population modelling study
Abstract Background Measles is among the most highly infectious human diseases. By virtue of increasingly effective childhood vaccination, together with targeted supplemental immunization activities (SIAs), health authorities in the People’s Republic of China have reduced measles’ reproduction number from about 18 to 2.3. Despite substantial residual susceptibility among young adults, more in some locales than others, sustained routine childhood immunization likely would eliminate measles eventually. To support global eradication efforts, as well as expedite morbidity and mortality reductions in China, we evaluated alternative SIAs via mechanistic mathematical modelling. Methods Our model Chinese population is stratified by immune status (susceptible to measles infection; infected, but not yet infectious; infectious; and recovered or immunized), age (0, 1–4, 5–9, …, 65+ years) and location (31 provinces). Contacts between sub-populations are either empirical or a mixture of preferential and proportionate with respect to age and decline exponentially with distance between locations at age-dependent rates. We estimated initial conditions and most parameters from recent cross-sectional serological surveys, disease surveillance and demographic observations. Then we calculated the reproduction numbers and gradient of the effective number with respect to age- and location-specific immunization rates. We corroborated these analytical results by simulating adolescent and young adult SIAs using a version of our model in which the age-specific contact rates vary seasonally. Results Whereas the gradient indicates that vaccinating young adults generally is the optimal strategy, simulations indicate that a catch-up campaign among susceptible adolescent schoolchildren would accelerate elimination, with timing dependent on uptake. Conclusions These results are largely due to indirect effects (i.e. fewer infections than immunized people might otherwise cause), which meta-population models with realistic mixing are uniquely capable of reproducing accurately.
more »
« less
- Award ID(s):
- 1814545
- PAR ID:
- 10110337
- Date Published:
- Journal Name:
- International Journal of Epidemiology
- Volume:
- 48
- Issue:
- 4
- ISSN:
- 0300-5771
- Page Range / eLocation ID:
- 1240 to 1251
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
After one pandemic year of remote or hybrid instructional modes, universities struggled with plans for an in-person autumn (fall) semester in 2021. To help inform university reopening policies, we collected survey data on social contact patterns and developed an agent-based model to simulate the spread of severe acute respiratory syndrome coronavirus 2 in university settings. Considering a reproduction number of R 0 = 3 and 70% immunization effectiveness, we estimated that at least 80% of the university population immunized through natural infection or vaccination is needed for safe university reopening with relaxed non-pharmaceutical interventions (NPIs). By contrast, at least 60% of the university population immunized through natural infection or vaccination is needed for safe university reopening when NPIs are adopted. Nevertheless, attention needs to be paid to large-gathering events that could lead to infection size spikes. At an immunization coverage of 70%, continuing NPIs, such as wearing masks, could lead to a 78.39% reduction in the maximum cumulative infections and a 67.59% reduction in the median cumulative infections. However, even though this reduction is very beneficial, there is still a possibility of non-negligible size outbreaks because the maximum cumulative infection size is equal to 1.61% of the population, which is substantial.more » « less
-
Abstract BackgroundChildren are less susceptible to SARS-CoV-2 infection and typically have milder illness courses than adults, but the factors underlying these age-associated differences are not well understood. The upper respiratory microbiome undergoes substantial shifts during childhood and is increasingly recognized to influence host defense against respiratory pathogens. Thus, we sought to identify upper respiratory microbiome features associated with SARS-CoV-2 infection susceptibility and illness severity. MethodsWe collected clinical data and nasopharyngeal swabs from 285 children, adolescents, and young adults (<21 years) with documented SARS-CoV-2 exposure. We used 16S ribosomal RNA gene sequencing to characterize the nasopharyngeal microbiome and evaluated for age-adjusted associations between microbiome characteristics and SARS-CoV-2 infection status and respiratory symptoms. ResultsNasopharyngeal microbiome composition varied with age (PERMANOVA, P < .001; R2 = 0.06) and between SARS-CoV-2–infected individuals with and without respiratory symptoms (PERMANOVA, P = .002; R2 = 0.009). SARS-CoV-2–infected participants with Corynebacterium/Dolosigranulum-dominant microbiome profiles were less likely to have respiratory symptoms than infected participants with other nasopharyngeal microbiome profiles (OR: .38; 95% CI: .18–.81). Using generalized joint attributed modeling, we identified 9 bacterial taxa associated with SARS-CoV-2 infection and 6 taxa differentially abundant among SARS-CoV-2–infected participants with respiratory symptoms; the magnitude of these associations was strongly influenced by age. ConclusionsWe identified interactive relationships between age and specific nasopharyngeal microbiome features that are associated with SARS-CoV-2 infection susceptibility and symptoms in children, adolescents, and young adults. Our data suggest that the upper respiratory microbiome may be a mechanism by which age influences SARS-CoV-2 susceptibility and illness severity.more » « less
-
At a time when educational attainment in young adulthood forecasts long-term trajectories of economic mobility, better health, and stable partnership, there is more pressure on mothers to provide labor and support to advance their children’s interests in the K–12 system. As a result, poor health among mothers when children are growing up may interfere with how far they progress educationally. Applying life course theory to the National Longitudinal Study of Adolescent to Adult Health to investigate this possibility, we found that young adults were less likely to graduate from college when raised by mothers in poor health, especially when those mothers had a college degree themselves. Young people’s school-related behaviors mediated this longitudinal association. These findings extend the literature on the connection between education and health into an intergenerational process, speaking to a pressing public health issue—rising morbidity among adults in midlife—and the reproduction of inequality within families.more » « less
-
Rychtář, Jan (Ed.)The time-series Susceptible-Infectious-Recovered (TSIR) model has been a standard tool for studying the non-linear dynamics of acute, immunizing infectious diseases. The standard assumption of the TSIR model, that vaccination is equivalent to a reduction in the recruitment of susceptible individuals, or the birth rate, can lead to a bias in the estimate of the reporting fraction and of the total incidence. We show that this bias increases with the level of vaccination due to a double counting of individuals who are infected prior to the age of vaccination. We present a simple correction for this bias by discounting the observed number of cases by the product of the number that occur prior to the average age of vaccination and the vaccination coverage during the initial susceptible reconstruction step of the TSIR model fitting. We generate a time series of measles cases using an age-structured SIR transmission model with vaccination after birth (at 9 months of age) and illustrate the bias with the standard TSIR fitting method. We then illustrate that our proposed correction eliminates the bias in the estimated reporting fraction and total incidence. We note further that this bias does not impact the estimates of the seasonality of transmission.more » « less
An official website of the United States government

