skip to main content


Title: The primary transcriptome of hormogonia from a filamentous cyanobacterium defined by cappable-seq
Hormogonia are motile filaments produced by many filamentous cyanobacteria that function in dispersal, phototaxis and the establishment of nitrogen-fixing symbioses. The gene regulatory network promoting hormogonium development is initiated by the hybrid histidine kinase HrmK, which in turn activates a sigma factor cascade consisting of SigJ, SigC and SigF. In this study, cappable-seq was employed to define the primary transcriptome of developing hormogonia in the model filamentous cyanobacterium Nostoc punctiforme ATCC 29133 in both the wild-type, and sigJ , sigC and sigF mutant strains 6 h post-hormogonium induction. A total of 1544 transcriptional start sites (TSSs) were identified that are associated with protein-coding genes and are expressed at levels likely to lead to biologically relevant transcripts in developing hormogonia. TSS expression among the sigma-factor deletion strains was highly consistent with previously reported gene expression levels from RNAseq experiments, and support the current working model for the role of these genes in hormogonium development. Analysis of SigJ-dependent TSSs corroborated the presence of the previously identified J-Box in the −10 region of SigJ-dependent promoters. Additionally, the data presented provides new insights on sequence conservation within the −10 regions of both SigC- and SigF-dependent promoters, and demonstrates that SigJ and SigC coordinate complex co-regulation not only of hormogonium-specific genes at different loci, but within an individual operon. As progress continues on defining the hormogonium gene regulatory network, this data set will serve as a valuable resource.  more » « less
Award ID(s):
1753690
NSF-PAR ID:
10319148
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Microbiology
Volume:
167
Issue:
11
ISSN:
1350-0872
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Cyanobacteria are prokaryotes capable of oxygenic photosynthesis, and frequently, nitrogen fixation as well. As a result, they contribute substantially to global primary production and nitrogen cycles. Furthermore, the multicellular filamentous cyanobacteria in taxonomic subsections IV and V are developmentally complex, exhibiting an array of differentiated cell types and filaments, including motile hormogonia, making them valuable model organisms for studying development. To investigate the role of sigma factors in the gene regulatory network (GRN) controlling hormogonium development, a combination of genetic, immunological, and time-resolved transcriptomic analyses were conducted in the model filamentous cyanobacterium Nostoc punctiforme , which, unlike other common model cyanobacteria, retains the developmental complexity of field isolates. The results support a model where the hormogonium GRN is driven by a hierarchal sigma factor cascade, with sigJ activating the expression of both sigC and sigF, as well as a substantial portion of additional hormogonium-specific genes, including those driving changes to cellular architecture. In turn, sigC regulates smaller subsets of genes for several processes, plays a dominant role in promoting reductive cell division, and may also both positively and negatively regulate sigJ to reinforce the developmental program and coordinate the timing of gene expression, respectively. In contrast, the sigF regulon is extremely limited. Among genes with characterized roles in hormogonium development, only pilA shows stringent sigF dependence. For sigJ -dependent genes, a putative consensus promoter was also identified, consisting primarily of a highly conserved extended −10 region, here designated a J-Box, which is widely distributed among diverse members of the cyanobacterial lineage. IMPORTANCE Cyanobacteria are integral to global carbon and nitrogen cycles, and their metabolic capacity coupled with their ease of genetic manipulation make them attractive platforms for applications such as biomaterial and biofertilizer production. Achieving these goals will likely require a detailed understanding and precise rewiring of these organisms’ GRNs. The complex phenotypic plasticity of filamentous cyanobacteria has also made them valuable models of prokaryotic development. However, current research has been limited by focusing primarily on a handful of model strains which fail to reflect the phenotypes of field counterparts, potentially limiting biotechnological advances and a more comprehensive understanding of developmental complexity. Here, using Nostoc punctiforme , a model filamentous cyanobacterium that retains the developmental range of wild isolates, we define previously unknown definitive roles for a trio of sigma factors during hormogonium development. These findings substantially advance our understanding of cyanobacterial development and gene regulation and could be leveraged for future applications. 
    more » « less
  2. ABSTRACT Filamentous, heterocyst-forming cyanobacteria belonging to taxonomic subsections IV and V are developmentally complex multicellular organisms capable of differentiating an array of cell and filament types, including motile hormogonia. Hormogonia exhibit gliding motility that facilitates dispersal, phototaxis, and the establishment of nitrogen-fixing symbioses. The gene regulatory network (GRN) governing hormogonium development involves a hierarchical sigma factor cascade, but the factors governing the activation of this cascade are currently undefined. Here, using a forward genetic approach, we identified hrmK , a gene encoding a putative hybrid histidine kinase that functions upstream of the sigma factor cascade. The deletion of hrmK produced nonmotile filaments that failed to display hormogonium morphology or accumulate hormogonium-specific proteins or polysaccharide. Targeted transcriptional analyses using reverse transcription-quantitative PCR (RT-qPCR) demonstrated that hormogonium-specific genes both within and outside the sigma factor cascade are drastically downregulated in the absence of hrmK and that hrmK may be subject to indirect, positive autoregulation via sigJ and sigC . Orthologs of HrmK are ubiquitous among, and exclusive to, heterocyst-forming cyanobacteria. Collectively, these results indicate that hrmK functions upstream of the sigma factor cascade to initiate hormogonium development, likely by modulating the phosphorylation state of an unknown protein that may serve as the master regulator of hormogonium development in heterocyst-forming cyanobacteria. IMPORTANCE Filamentous cyanobacteria are morphologically complex, with several representative species amenable to routine genetic manipulation, making them excellent model organisms for the study of development. Furthermore, two of the developmental alternatives, nitrogen-fixing heterocysts and motile hormogonia, are essential to establish nitrogen-fixing symbioses with plant partners. These symbioses are integral to global nitrogen cycles and could be artificially recreated with crop plants to serve as biofertilizers, but to achieve this goal, detailed understanding and manipulation of the hormogonium and heterocyst gene regulatory networks may be necessary. Here, using the model organism Nostoc punctiforme , we identify a previously uncharacterized hybrid histidine kinase that is confined to heterocyst-forming cyanobacteria as the earliest known participant in hormogonium development. 
    more » « less
  3. null (Ed.)
    Bacterial cells alter gene expression in response to changes in population density in a process called quorum sensing (QS). In Vibrio harveyi, LuxO, a low cell density activator of sigma factor-54 (RpoN), is required for transcription of five non-coding regulatory sRNAs, Qrr1-Qrr5, which each repress translation of the master QS regulator LuxR. Vibrio parahaemolyticus, the leading cause of bacterial seafood-borne gastroenteritis, also contains five Qrr sRNAs that control OpaR (the LuxR homolog), controlling capsule polysaccharide (CPS), motility, and metabolism. We show that in a Δ luxO deletion mutant, opaR was de-repressed and CPS and biofilm were produced. However, in a Δ rpoN mutant, opaR was repressed, no CPS was produced, and less biofilm production was observed compared to wild type. To determine why opaR was repressed, expression analysis in Δ luxO showed all five qrr genes were repressed, while in Δ rpoN the qrr2 gene was significantly de-repressed. Reporter assays and mutant analysis showed Qrr2 sRNA can act alone to control OpaR. Bioinformatics analysis identified a sigma-70 (RpoD) -35 -10 promoter overlapping the canonical sigma-54 (RpoN) -24 -12 promoter in the qrr2 regulatory region. The qrr2 sigma-70 promoter element was also present in additional Vibrio species indicating it is widespread. Mutagenesis of the sigma-70 -10 promoter site in the Δ rpoN mutant background, resulted in repression of qrr2. Analysis of qrr quadruple deletion mutants, in which only a single qrr gene is present, showed that only Qrr2 sRNA can act independently to regulate opaR . Mutant and expression data also demonstrated that RpoN and the global regulator, Fis, act additively to repress qrr2 . Our data has uncovered a new mechanism of qrr expression and shows that Qrr2 sRNA is sufficient for OpaR regulation. Importance The quorum sensing non-coding sRNAs are present in all Vibrio species but vary in number and regulatory roles among species. In the Harveyi clade, all species contain five qrr genes, and in V. harveyi these are transcribed by sigma-54 and are additive in function. In the Cholerae clade, four qrr genes are present, and in V. cholerae the qrr genes are redundant in function. In V. parahaemolyticus , qrr2 is controlled by two overlapping promoters. In an rpoN mutant, qrr2 is transcribed from a sigma-70 promoter that is present in all V. parahaemolyticus strains and in other species of the Harveyi clade suggesting a conserved mechanism of regulation. Qrr2 sRNA can function as the sole Qrr sRNA to control OpaR. 
    more » « less
  4. Abstract

    Cyanobacteria comprise a phylum defined by the capacity for oxygenic photosynthesis. Members of this phylum are frequently motile as well. Strains that display gliding or twitching motility across semisolid surfaces are powered by a conserved type IV pilus system (T4P). Among the filamentous, heterocyst‐forming cyanobacteria, motility is usually confined to specialized filaments known as hormogonia, and requires the deposition of an associated hormogonium polysaccharide (HPS). The genes involved in assembly and export of HPS are largely undefined, and it has been hypothesized that HPS exits the outer membrane via an atypical T4P‐driven mechanism. Here, several novelhpsloci, primarily encoding glycosyl transferases, are identified. Mutational analysis demonstrates that the majority of these genes are essential for both motility and production of HPS. Notably, most mutant strains accumulate wild‐type cellular levels of the major pilin PilA, but not extracellular PilA, indicating dysregulation of the T4P motors, and, therefore, a regulatory interaction between HPS assembly and T4P activity. A co‐occurrence analysis of Hps orthologs among cyanobacteria identified an extended set of putative Hps proteins comprising most components of a Wzx/Wzy‐type polysaccharide synthesis and export system. This implies that HPS may be secreted through a more canonical pathway, rather than a T4P‐mediated mechanism.

     
    more » « less
  5. INTRODUCTION Neurons are by far the most diverse of all cell types in animals, to the extent that “cell types” in mammalian brains are still mostly heterogeneous groups, and there is no consensus definition of the term. The Drosophila optic lobes, with approximately 200 well-defined cell types, provides a tractable system with which to address the genetic basis of neuronal type diversity. We previously characterized the distinct developmental gene expression program of each of these types using single-cell RNA sequencing (scRNA-seq), with one-to-one correspondence to the known morphological types. RATIONALE The identity of fly neurons is determined by temporal and spatial patterning mechanisms in stem cell progenitors, but it remained unclear how these cell fate decisions are implemented and maintained in postmitotic neurons. It was proposed in Caenorhabditis elegans that unique combinations of terminal selector transcription factors (TFs) that are continuously expressed in each neuron control nearly all of its type-specific gene expression. This model implies that it should be possible to engineer predictable and complete switches of identity between different neurons just by modifying these sustained TFs. We aimed to test this prediction in the Drosophila visual system. RESULTS Here, we used our developmental scRNA-seq atlases to identify the potential terminal selector genes in all optic lobe neurons. We found unique combinations of, on average, 10 differentially expressed and stably maintained (across all stages of development) TFs in each neuron. Through genetic gain- and loss-of-function experiments in postmitotic neurons, we showed that modifications of these selector codes are sufficient to induce predictable switches of identity between various cell types. Combinations of terminal selectors jointly control both developmental (e.g., morphology) and functional (e.g., neurotransmitters and their receptors) features of neurons. The closely related Transmedullary 1 (Tm1), Tm2, Tm4, and Tm6 neurons (see the figure) share a similar code of terminal selectors, but can be distinguished from each other by three TFs that are continuously and specifically expressed in one of these cell types: Drgx in Tm1, Pdm3 in Tm2, and SoxN in Tm6. We showed that the removal of each of these selectors in these cell types reprograms them to the default Tm4 fate. We validated these conversions using both morphological features and molecular markers. In addition, we performed scRNA-seq to show that ectopic expression of pdm3 in Tm4 and Tm6 neurons converts them to neurons with transcriptomes that are nearly indistinguishable from that of wild-type Tm2 neurons. We also show that Drgx expression in Tm1 neurons is regulated by Klumpfuss, a TF expressed in stem cells that instructs this fate in progenitors, establishing a link between the regulatory programs that specify neuronal fates and those that implement them. We identified an intronic enhancer in the Drgx locus whose chromatin is specifically accessible in Tm1 neurons and in which Klu motifs are enriched. Genomic deletion of this region knocked down Drgx expression specifically in Tm1 neurons, leaving it intact in the other cell types that normally express it. We further validated this concept by demonstrating that ectopic expression of Vsx (visual system homeobox) genes in Mi15 neurons not only converts them morphologically to Dm2 neurons, but also leads to the loss of their aminergic identity. Our results suggest that selector combinations can be further sculpted by receptor tyrosine kinase signaling after neurogenesis, providing a potential mechanism for postmitotic plasticity of neuronal fates. Finally, we combined our transcriptomic datasets with previously generated chromatin accessibility datasets to understand the mechanisms that control brain wiring downstream of terminal selectors. We built predictive computational models of gene regulatory networks using the Inferelator framework. Experimental validations of these networks revealed how selectors interact with ecdysone-responsive TFs to activate a large and specific repertoire of cell surface proteins and other effectors in each neuron at the onset of synapse formation. We showed that these network models can be used to identify downstream effectors that mediate specific cellular decisions during circuit formation. For instance, reduced levels of cut expression in Tm2 neurons, because of its negative regulation by pdm3 , controls the synaptic layer targeting of their axons. Knockdown of cut in Tm1 neurons is sufficient to redirect their axons to the Tm2 layer in the lobula neuropil without affecting other morphological features. CONCLUSION Our results support a model in which neuronal type identity is primarily determined by a relatively simple code of continuously expressed terminal selector TFs in each cell type throughout development. Our results provide a unified framework of how specific fates are initiated and maintained in postmitotic neurons and open new avenues to understanding synaptic specificity through gene regulatory networks. The conservation of this regulatory logic in both C. elegans and Drosophila makes it likely that the terminal selector concept will also be useful in understanding and manipulating the neuronal diversity of mammalian brains. Terminal selectors enable predictive cell fate reprogramming. Tm1, Tm2, Tm4, and Tm6 neurons of the Drosophila visual system share a core set of TFs continuously expressed by each cell type (simplified). The default Tm4 fate is overridden by the expression of a single additional terminal selector to generate Tm1 ( Drgx ), Tm2 ( pdm3 ), or Tm6 ( SoxN ) fates. 
    more » « less