skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Real-time gravitational replicas: low dimensional examples
A bstract We continue the study of real-time replica wormholes initiated in [1]. Previously, we had discussed the general principles and had outlined a variational principle for obtaining stationary points of the real-time gravitational path integral. In the current work we present several explicit examples in low-dimensional gravitational theories where the dynamics is amenable to analytic computation. We demonstrate the computation of Rényi entropies in the cases of JT gravity and for holographic two-dimensional CFTs (using the dual gravitational dynamics). In particular, we explain how to obtain the large central charge result for subregions comprising of disjoint intervals directly from the real-time path integral.  more » « less
Award ID(s):
1820908
PAR ID:
10319182
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
8
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> Gravitational Rényi computations have traditionally been described in the language of Euclidean path integrals. In the semiclassical limit, such calculations are governed by Euclidean (or, more generally, complex) saddle-point geometries. We emphasize here that, at least in simple contexts, the Euclidean approach suggests an alternative formulation in terms of the bulk quantum wavefunction. Since this alternate formulation can be directly applied to the real-time quantum theory, it is insensitive to subtleties involved in defining the Euclidean path integral. In particular, it can be consistent with many different choices of integration contour. Despite the fact that self-adjoint operators in the associated real-time quantum theory have real eigenvalues, we note that the bulk wavefunction encodes the Euclidean (or complex) Rényi geometries that would arise in any Euclidean path integral. As a result, for any given quantum state, the appropriate real-time path integral yields both Rényi entropies and associated complex saddle-point geometries that agree with Euclidean methods. After brief explanations of these general points, we use JT gravity to illustrate the associated real-time computations in detail. 
    more » « less
  2. A<sc>bstract</sc> We consider the problem of defining a microcanonical thermofield double state at fixed energy and angular momentum from the gravitational path integral. A semiclassical approximation to this state is obtained by imposing a mixed boundary condition on an initial time surface. We analyze the corresponding boundary value problem and gravitational action. The overlap of this state with the canonical thermofield double state, which is interpreted as the Hartle-Hawking wavefunction of an eternal black hole in a mini-superspace approximation, is calculated semiclassically. The relevant saddlepoint is a higher-dimensional, rotating generalization of the wedge geometry that has been studied in two-dimensional gravity. Along the way we discuss a new corner term in the gravitational action that arises at a rotating horizon. 
    more » « less
  3. null (Ed.)
    A bstract This work is the first step in a two-part investigation of real-time replica wormholes. Here we study the associated real-time gravitational path integral and construct the variational principle that will define its saddle-points. We also describe the general structure of the resulting real-time replica wormhole saddles, setting the stage for construction of explicit examples. These saddles necessarily involve complex metrics, and thus are accessed by deforming the original real contour of integration. However, the construction of these saddles need not rely on analytic continuation, and our formulation can be used even in the presence of non-analytic boundary-sources. Furthermore, at least for replica- and CPT-symmetric saddles we show that the metrics may be taken to be real in regions spacelike separated from a so-called ‘splitting surface’. This feature is an important hallmark of unitarity in a field theory dual. 
    more » « less
  4. Quantum time correlation functions (TCFs) involving two states are important for describing nonadiabatic dynamical processes such as charge transfer (CT). Based on a previous single-state method, we propose an imaginary-time open-chain path-integral (OCPI) approach for evaluating the two-state symmetrized TCFs. Expressing the forward and backward propagation on different electronic potential energy surfaces as a complex-time path integral, we then transform the path variables to average and difference variables such that the integration over the difference variables up to the second order can be performed analytically. The resulting expression for the symmetrized TCF is equivalent to sampling the open-chain configurations in an effective potential that corresponds to the average surface. Using importance sampling over the extended OCPI space via open path-integral molecular dynamics, we tested the resulting path-integral approximation by calculating the Fermi’s golden rule CT rate constant within a widely used spin-boson model. Comparing with the real-time linearized semiclassical method and analytical result, we show that the imaginary-time OCPI provides an accurate two-state symmetrized TCF and rate constant in the typical turnover region. It is shown that the first bead of the open chain corresponds to physical zero-time and that the endpoint bead corresponds to final time t; oscillations of the end-to-end distance perfectly match the nuclear mode frequency. The two-state OCPI scheme is seen to capture the tested model’s electronic quantum coherence and nuclear quantum effects accurately. 
    more » « less
  5. Two-dimensional Raman and hybrid terahertz-Raman spectroscopic techniques provide invaluable insight into molecular structures and dynamics of condensed-phase systems. However, corroborating experimental results with theory is difficult due to the high computational cost of incorporating quantum-mechanical effects in the simulations. Here, we present the equilibrium–nonequilibrium ring-polymer molecular dynamics (RPMD), a practical computational method that can account for nuclear quantum effects on the two-time response function of nonlinear optical spectroscopy. Unlike a recently developed approach based on the double Kubo transformed (DKT) correlation function, our method is exact in the classical limit, where it reduces to the established equilibrium-nonequilibrium classical molecular dynamics method. Using benchmark model calculations, we demonstrate the advantages of the equilibrium–nonequilibrium RPMD over classical and DKT-based approaches. Importantly, its derivation, which is based on the nonequilibrium RPMD, obviates the need for identifying an appropriate Kubo transformed correlation function and paves the way for applying real-time path-integral techniques to multidimensional spectroscopy. 
    more » « less