skip to main content


Title: Survey of Transient Execution Attacks and Their Mitigations
Transient execution attacks, also known as speculative execution attacks, have drawn much interest in the last few years as they can cause critical data leakage. Since the first disclosure of Spectre and Meltdown attacks in January 2018, a number of new transient execution attack types have been demonstrated targeting different processors. A transient execution attack consists of two main components: transient execution itself and a covert channel that is used to actually exfiltrate the information.Transient execution is a result of the fundamental features of modern processors that are designed to boost performance and efficiency, while covert channels are unintended information leakage channels that result from temporal and spatial sharing of the micro-architectural components. Given the severity of the transient execution attacks, they have motivated computer architects in both industry and academia to rethink the design of the processors and to propose hardware defenses. To help understand the transient execution attacks, this survey summarizes the phases of the attacks and the security boundaries across which the information is leaked in different attacks.This survey further analyzes the causes of transient execution as well as the different types of covert channels and presents a taxonomy of the attacks based on the causes and types. This survey in addition presents metrics for comparing different aspects of the transient execution attacks and uses them to evaluate the feasibility of the different attacks. This survey especially considers both existing attacks and potential new attacks suggested by our analysis. This survey finishes by discussing different mitigations that have so far been proposed at the micro-architecture level and discusses their benefits and limitations.  more » « less
Award ID(s):
1651945
NSF-PAR ID:
10319191
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ACM Computing Surveys
Volume:
54
Issue:
3
ISSN:
0360-0300
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Speculative execution attacks leverage the speculative and out-of-order execution features in modern computer processors to access secret data or execute code that should not be executed. Secret information can then be leaked through a covert channel. While software patches can be installed for mitigation on existing hardware, these solutions can incur big performance overhead. Hardware mitigation is being studied extensively by the computer architecture community. It has the benefit of preserving software compatibility and the potential for much smaller performance overhead than software solutions. This paper presents a systematization of the hardware defenses against speculative execution attacks that have been proposed. We show that speculative execution attacks consist of 6 critical attack steps. We propose defense strategies, each of which prevents a critical attack step from happening, thus preventing the attack from succeeding. We then summarize 20 hardware defenses and overhead-reducing features that have been proposed. We show that each defense proposed can be classified under one of our defense strategies, which also explains why it can thwart the attack from succeeding. We discuss the scope of the defenses, their performance overhead, and the security-performance trade-offs that can be made. 
    more » « less
  2. Abstract—Recent work has demonstrated the security risk associated with micro-architecture side-channels. The cache timing side-channel is a particularly popular target due to its availability and high leakage bandwidth. Existing proposals for defending cache side-channel attacks either degrade cache performance and/or limit cache sharing, hence, should only be invoked when the system is under attack. A lightweight monitoring mechanism that detects malicious micro-architecture manipulation in realistic environments is essential for the judicious deployment of these defense mechanisms. In this paper, we propose PREDATOR, a cache side-channel attack detector that identifies cache events caused by an attacker. To detect side-channel attacks in noisy environments, we take advantage of the observation that, unlike non-specific noises, an active attacker alters victim’s micro-architectural states on security critical accesses and thus causes the victim extra cache events on those accesses. PREDATOR uses precise performance counters to collect detailed victim’s access information and analyzes location-based deviations. PREDATOR is capable of detecting five different attacks with high accuracy and limited performance overhead in complex noisy execution environments. PREDATOR remains effective even when the attacker slows the attack rate by 256 times. Furthermore, PREDATOR is able to accurately report details about the attack such as the instruction that accesses the attacked data. In the case of GnuPG RSA [20], PREDATOR can pinpoint the square/multiply operations in the Modulo-Reduce algorithm; and in the case of OpenSSL AES [45], it can identify the accesses to the Te-Table. 
    more » « less
  3. null (Ed.)
    Cache side-channel attacks aim to breach the confidentiality of a computer system and extract sensitive secrets through CPU caches. In the past years, different types of side-channel attacks targeting a variety of cache architectures have been demonstrated. Meanwhile, different defense methods and systems have also been designed to mitigate these attacks. However, quantitatively evaluating the effectiveness of these attacks and defenses has been challenging. We propose a generic approach to evaluating cache side-channel attacks and defenses. Specifically, our method builds a deep neural network with its inputs as the adversary's observed information, and its outputs as the victim's execution traces. By training the neural network, the relationship between the inputs and outputs can be automatically discovered. As a result, the prediction accuracy of the neural network can serve as a metric to quantify how much information the adversary can obtain correctly, and how effective a defense solution is in reducing the information leakage under different attack scenarios. Our evaluation suggests that the proposed method can effectively evaluate different attacks and defenses. 
    more » « less
  4. Spectre and Meltdown attacks and their variants exploit hardware performance optimization features to cause security breaches. Secret information is accessed and leaked through covert or side channels. New attack variants keep appearing and we do not have a systematic way to capture the critical characteristics of these attacks and evaluate why they succeed or fail.In this paper, we provide a new attack-graph model for reasoning about speculative execution attacks. We model attacks as ordered dependency graphs, and prove that a race condition between two nodes can occur if there is a missing dependency edge between them. We define a new concept, “security dependency”, between a resource access and its prior authorization operation. We show that a missing security dependency is equivalent to a race condition between authorization and access, which is a root cause of speculative execution attacks. We show detailed examples of how our attack graph models the Spectre and Meltdown attacks, and is generalizable to all the attack variants published so far. This attack model is also very useful for identifying new attacks and for generalizing defense strategies. We identify several defense strategies with different performance-security tradeoffs. We show that the defenses proposed so far all fit under one of our defense strategies. We also explain how attack graphs can be constructed and point to this as promising future work for tool designers 
    more » « less
  5. null (Ed.)
    In early 2018, Meltdown first showed how to read arbitrary kernel memory from user space by exploiting side-effects from transient instructions. While this attack has been mitigated through stronger isolation boundaries between user and kernel space, Meltdown inspired an entirely new class of fault-driven transient-execution attacks. Particularly, over the past year, Meltdown-type attacks have been extended to not only leak data from the L1 cache but also from various other microarchitectural structures, including the FPU register file and store buffer. In this paper, we present the ZombieLoad attack which uncovers a novel Meltdown-type effect in the processor’s fill-buffer logic. Our analysis shows that faulting load instructions (i.e., loads that have to be re-issued) may transiently dereference unauthorized destinations previously brought into the fill buffer by the current or a sibling logical CPU. In contrast to concurrent attacks on the fill buffer, we are the first to report data leakage of recently loaded and stored stale values across logical cores even on Meltdown- and MDS-resistant processors. Hence, despite Intel’s claims [36], we show that the hardware fixes in new CPUs are not sufficient. We demonstrate ZombieLoad’s effectiveness in a multitude of practical attack scenarios across CPU privilege rings, OS processes, virtual machines, and SGX enclaves. We discuss both short and long-term mitigation approaches and arrive at the conclusion that disabling hyperthreading is the only possible workaround to prevent at least the most-powerful cross-hyperthread attack scenarios on current processors, as Intel’s software fixes are incomplete. 
    more » « less