skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 2-D Finite-Element Modeling of Surface Dielectric Barrier Plasma Discharge Devices to Understand the Influence of Design Parameters on Sterilization Applications
In this study, voltage distribution and surface dielectric barrier discharge (DBD) of a microplasma discharge device (MDD) were modeled in 2-D domain using finite-element analysis (FEA). Initially, the voltage distribution across comb-, H-tree-, and honeycomb-structured MDD was analyzed. Then, the cross section of an MDD consisting of a polyimide-based dielectric sandwiched between two copper electrodes was used for modeling the microplasma discharge characteristics in an argon environment. A sinusoidal voltage was applied to one of the copper electrodes while the other electrode was grounded. The spatial distributions of electron temperature (ET) across the electrodes for varying input voltages were simulated to demonstrate the importance of breakdown voltage. A detailed analysis on the effect of varying electrode and dielectric barrier thicknesses on electron density and ET was also performed to understand the importance of optimizing device configurations for microplasma discharge. Moreover, MDD was also simulated in varying ambient temperature and pressure conditions to evaluate their effect on ET and density across the electrodes. The results from these simulations provide a better understanding of parameters such as varying input voltage, electrode, and dielectric thickness on ET and electron density. This enables us to optimize design parameters for fabricating MDDs and the operating conditions for effective sterilization applications.  more » « less
Award ID(s):
1917144
PAR ID:
10319208
Author(s) / Creator(s):
; ;
Editor(s):
Lopez, J. L.
Date Published:
Journal Name:
IEEE Transactions on Plasma Science
ISSN:
0093-3813
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dielectric barrier discharge (DBD) plasma is a promising technology for catalysis due to its low‐temperature operation, cost‐effectiveness, and silent operation. This review comprehensively analyzes the design and operational parameters of DBD plasma reactors for three key catalytic applications: CH4conversion, CO2splitting, and dry reforming of methane (DRM). While catalyst selection is crucial for achieving desired product selectivity, reactor design and reaction parameters such as discharge power, electrode gap, reactor length, frequency, dielectric material thickness, and feed gas flow rate, significantly influence discharge characteristics and reaction mechanisms. This review also explores the influence of less prominent factors, such as electrode shape and applied voltage waveforms. Additionally, this review addresses the challenges of DBD plasma catalysis, including heat loss, temperature effects on discharge characteristics, and strategies for enhancing overall efficiency. 
    more » « less
  2. When a gas is overvolted at or near atmospheric pressure, it results in a streamer discharge formation. Electrode geometries exert significant impact on the electrical breakdown of gases by altering the spatial profile of the electric field. In many applications the efficient generation of radicals is critical and is determined by the characteristics of the streamer discharge. We examine the effect of electrode geometry on the streamer characteristics and the production of radicals. This is performed for three different electrode geometries: plane–plane, pin–plane, and pin–pin. A two-dimensional rotationally symmetric fluid model is used for the streamer discharge simulation in the hydrogen/air gas mixture. The spatial profile of electron density and the electric field for point electrodes show significant differences when compared to plane electrodes. However, the efficiency of radical generation shows similar trends for the electrode configurations studied. We also present the results of spatial electrical energy density distribution which in turn determines spatial excited species distribution. These results can inform the design of specific applications. 
    more » « less
  3. CVD grown MoSe2 monolayers were electrically characterized at room temperature in a field effect transistor (FET) configuration using an ionic liquid (IL) as the gate dielectric. During the growth, instead of using MoO3 powder, ammonium heptamolybdate was used for better Mo control of the source and sodium cholate added for lager MoSe2 growth areas. In addition, a high specific capacitance (∼7 μF/cm2) IL was used as the gate dielectric to significantly reduce the operating voltage. The device exhibited ambipolar charge transport at low voltages with enhanced parameters during n- and p-FET operation. IL gating thins the Schottky barrier at the metal/semiconductor interface permitting efficient charge injection into the channel and reduces the effects of contact resistance on device performance. The large specific capacitance of the IL was also responsible for a much higher induced charge density compared to the standard SiO2 dielectric. The device was successfully tested as an inverter with a gain of ∼2. Using a common metal for contacts simplifies fabrication of this ambipolar device, and the possibility of radiative recombination of holes and electrons could further extend its use in low power optoelectronic applications. 
    more » « less
  4. We report the electrical properties of Al0.3Ga0.7N/GaN heterojunction field effect transistor (HFET) structures with a Ga2O3 passivation layer grown by metal–organic chemical vapor deposition (MOCVD). In this study, three different thicknesses of β-Ga2O3 dielectric layers were grown on Al0.3Ga0.7N/GaN structures leading to metal-oxide-semiconductor-HFET or MOSHFET structures. X-ray diffraction (XRD) showed the (2¯01) orientation peaks of β-Ga2O3 in the device structure. The van der Pauw and Hall measurements yield the electron density of ~ 4 × 1018 cm−3 and mobility of ~770 cm2V−1s−1 in the 2-dimensional electron gas (2DEG) channel at room temperature. Capacitance–voltage (C-V) measurement for the on-state 2DEG density for the MOSHFET structure was found to be of the order of ~1.5 × 1013 cm−2. The thickness of the Ga2O3 layer was inversely related to the threshold voltage and the on-state capacitance. The interface charge density between the oxide and Al0.3Ga0.7N barrier layer was found to be of the order of ~1012 cm2eV−1. A significant reduction in leakage current from ~10−4 A/cm2 for HFET to ~10−6 A/cm2 for MOSHFET was observed well beyond pinch-off in the off-stage at -20 V applied gate voltage. The annealing at 900° C of the MOSHFET structures revealed that the Ga2O3 layer was thermally stable at high temperatures resulting in insignificant threshold voltage shifts for annealed samples with respect to as-deposited (unannealed) structures. Our results show that the MOCVD-gown Ga2O3 dielectric layers can be a strong candidate for stable high-power devices. 
    more » « less
  5. Miniaturized photoionization detectors (PIDs) are used in conjunction with gas chromatography systems to detect volatile compounds in gases by collecting the current from the photoionized gas analytes. PIDs should be inexpensive and compatible with a wide range of analyte species. One such PID is based on the formation of a He plasma in a dielectric barrier discharge (DBD), which generates vacuum UV (VUV) photons from excited states of He to photoionize gas analytes. There are several design parameters that can be leveraged to increase the ionizing photon flux to gas analytes to increase the sensitivity of the PID. To that end, the methods to maximize the photon flux from a pulsed He plasma in a DBD-PID were investigated using a two-dimensional plasma hydrodynamics model. The ionizing photon flux originated from the resonance states of helium, He(3P) and He(21P), and from the dimer excimer He2*. While the photon flux from the resonant states was modulated over the voltage pulse, the photon flux from He2* persisted long after the voltage pulse passed. Several geometrical optimizations were investigated, such as using an array of pointed electrodes. However, increasing the capacitance of the dielectric enclosing the plasma chamber had the largest effect on increasing the VUV photon fluence to gas analytes. 
    more » « less