Light is a preeminent spectroscopic tool for investigating the electronic structure of surfaces. Time-resolved photoelectron spectroscopy has mainly been developed in the last 30 years. It is therefore not surprising that the topic was hardly mentioned in the issue on ‘‘The first thirty years’’ of surface science. In the second thirty years, however, we have seen tremendous progress in the development of time-resolved photoelectron spectroscopy on surfaces. Femtosecond light pulses and advanced photoelectron detection schemes are increasingly being used to study the electronic structure and dynamics of occupied and unoccupied electronic states and dynamic processes such as the energy and momentum relaxation of electrons, charge transfer at interfaces and collective processes such as plasmonic excitation and optical field screening. Using spin- and time-resolved photoelectron spectroscopy, we were able to study ultrafast spin dynamics, electron–magnon scattering and spin structures in magnetic and topological materials. Light also provides photon energy as well as electric and magnetic fields that can influence molecular surface processes to steer surface photochemistry and hot-electron-driven catalysis. In addition, we can consider light as a chemical reagent that can alter the properties of matter by creating non-equilibrium states and ultrafast phase transitions in correlated materials through the coupling of electrons, phonons and spins. Electric fields have also been used to temporarily change the electronic structure. This opened up new methods and areas such as high harmonic generation, light wave electronics and attosecond physics. This overview certainly cannot cover all these interesting topics. But also as a testimony to the cohesion and constructive exchange in our ultrafast community, a number of colleagues have come together to share their expertise and views on the very vital field of dynamics at surfaces.
more »
« less
The 2021 ultrafast spectroscopic probes of condensed matter roadmap
Abstract In the 60 years since the invention of the laser, the scientific community has developed numerous fields of research based on these bright, coherent light sources, including the areas of imaging, spectroscopy, materials processing and communications. Ultrafast spectroscopy and imaging techniques are at the forefront of research into the light–matter interaction at the shortest times accessible to experiments, ranging from a few attoseconds to nanoseconds. Light pulses provide a crucial probe of the dynamical motion of charges, spins, and atoms on picosecond, femtosecond, and down to attosecond timescales, none of which are accessible even with the fastest electronic devices. Furthermore, strong light pulses can drive materials into unusual phases, with exotic properties. In this roadmap we describe the current state-of-the-art in experimental and theoretical studies of condensed matter using ultrafast probes. In each contribution, the authors also use their extensive knowledge to highlight challenges and predict future trends.
more »
« less
- Award ID(s):
- 1734006
- PAR ID:
- 10319244
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Journal of Physics: Condensed Matter
- Volume:
- 33
- Issue:
- 35
- ISSN:
- 0953-8984
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ultrafast optical spectroscopy is an effective experimental technique for accessing electronic and atomic motions in materials at their fundamental timescales and studying their responses to external perturbations. Despite the important insights that ultrafast techniques can provide on the microscopic physics of solids, undergraduate students' exposure to this area of research is still limited. In this article, we describe an ultrafast optical pump-probe spectroscopy experiment for the advanced undergraduate instructional laboratory, in which students can measure coherently excited vibrations of the crystal lattice and connect their observations to the microscopic properties of the investigated materials. We designed a simple table-top apparatus based on a commercial Er-fiber oscillator emitting 50-fs pulses at 1560 nm and at 100 MHz repetition rate. We split the output into two beams, using one of them as an intense “pump” to coherently excite phonons in selected crystals, and the other as a weaker, delayed “probe” to measure the transient reflectivity changes induced by the pump. We characterize the ultrafast laser pulses via intensity autocorrelation measurements and detect coherent phonon oscillations in the reflectivity of Bi, Sb, and 1T-TaS2. We then discuss the oscillation amplitude, frequency, and damping in terms of microscopic properties of these systems.more » « less
-
As conventional electronic materials approach their physical limits, the application of ultrafast optical fields to access transient states of matter cap- tures imagination. The inversion symmetry governs the optical parity selection rule, differentiating between accessible and inaccessible states of matter. To circumvent parity-forbidden transitions, the common practice is to break the inversion symmetry by material design or external fields. Here we report how the application of femtosecond ultraviolet pulses can energize a parity-forbidden dark exciton state in black phosphorus while maintaining its intrinsic material symmetry. Unlike its conventional bandgap absorption in visible-to-infrared, femtosecond ultraviolet excitation turns on efficient Coulomb scattering, promoting carrier multiplication and electronic heating to ~3000 K, and consequently populating its parity-forbidden states. Interfero- metric time- and angle-resolved two-photon photoemission spectroscopy reveals dark exciton dynamics of black phosphorus on ~100 fs time scale and its anisotropic wavefunctions in energy-momentum space, illuminating its potential applications in optoelectronics and photochemistry under ultraviolet optical excitation.more » « less
-
Nonlinear optics has long been a cornerstone of modern photonics, enabling a wide array of technologies, from frequency conversion to the generation of ultrafast light pulses. Recent breakthroughs in two-dimensional (2D) materials have opened a frontier in this field, offering new opportunities for both classical and quantum nonlinear optics. These atomically thin materials exhibit strong light–matter interactions and large nonlinear responses, thanks to their tunable lattice symmetries, strong resonance effects, and highly engineerable band structures. In this paper, we explore the potential that 2D materials bring to nonlinear optics, covering topics from classical nonlinear optics to nonlinearities at the few-photon level. We delve into how these materials enable possibilities, such as symmetry control, phase matching, and integration into photonic circuits. The fusion of 2D materials with nonlinear optics provides insights into the fundamental behaviors of elementary excitations—such as electrons, excitons, and photons—in low-dimensional systems and has the potential to transform the landscape of next-generation photonic and quantum technologies.more » « less
-
Abstract Terahertz (THz) technology is critical for quantum material physics, biomedical imaging, ultrafast electronics, and next‐generation wireless communications. However, standing in the way of widespread applications is the scarcity of efficient ultrafast THz sources with on‐demand fast modulation and easy on‐chip integration capability. Here the discovery of colossal THz emission is reported from a van der Waals (vdW) ferroelectric semiconductor NbOI2. Using THz emission spectroscopy, a THz generation efficiency an order of magnitude higher than that of ZnTe, a standard nonlinear crystal for ultrafast THz generation is observed. The underlying generation mechanisms associated are further uncovered with its large ferroelectric polarization by studying the THz emission dependence on excitation wavelength, incident polarization, and fluence. Moreover, the ultrafast coherent amplification and annihilation of the THz emission and associated coherent phonon oscillations by employing a double‐pump scheme are demonstrated. These findings combined with first‐principles calculations, inform a new understanding of the THz light–matter interaction in emergent vdW ferroelectrics and pave the way to develop high‐performance THz devices on them for quantum materials sensing and ultrafast electronics.more » « less
An official website of the United States government

