skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The 2021 ultrafast spectroscopic probes of condensed matter roadmap
Abstract In the 60 years since the invention of the laser, the scientific community has developed numerous fields of research based on these bright, coherent light sources, including the areas of imaging, spectroscopy, materials processing and communications. Ultrafast spectroscopy and imaging techniques are at the forefront of research into the light–matter interaction at the shortest times accessible to experiments, ranging from a few attoseconds to nanoseconds. Light pulses provide a crucial probe of the dynamical motion of charges, spins, and atoms on picosecond, femtosecond, and down to attosecond timescales, none of which are accessible even with the fastest electronic devices. Furthermore, strong light pulses can drive materials into unusual phases, with exotic properties. In this roadmap we describe the current state-of-the-art in experimental and theoretical studies of condensed matter using ultrafast probes. In each contribution, the authors also use their extensive knowledge to highlight challenges and predict future trends.  more » « less
Award ID(s):
1734006
PAR ID:
10319244
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Date Published:
Journal Name:
Journal of Physics: Condensed Matter
Volume:
33
Issue:
35
ISSN:
0953-8984
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ultrafast optical spectroscopy is an effective experimental technique for accessing electronic and atomic motions in materials at their fundamental timescales and studying their responses to external perturbations. Despite the important insights that ultrafast techniques can provide on the microscopic physics of solids, undergraduate students' exposure to this area of research is still limited. In this article, we describe an ultrafast optical pump-probe spectroscopy experiment for the advanced undergraduate instructional laboratory, in which students can measure coherently excited vibrations of the crystal lattice and connect their observations to the microscopic properties of the investigated materials. We designed a simple table-top apparatus based on a commercial Er-fiber oscillator emitting 50-fs pulses at 1560 nm and at 100 MHz repetition rate. We split the output into two beams, using one of them as an intense “pump” to coherently excite phonons in selected crystals, and the other as a weaker, delayed “probe” to measure the transient reflectivity changes induced by the pump. We characterize the ultrafast laser pulses via intensity autocorrelation measurements and detect coherent phonon oscillations in the reflectivity of Bi, Sb, and 1T-TaS2. We then discuss the oscillation amplitude, frequency, and damping in terms of microscopic properties of these systems. 
    more » « less
  2. Abstract Terahertz (THz) technology is critical for quantum material physics, biomedical imaging, ultrafast electronics, and next‐generation wireless communications. However, standing in the way of widespread applications is the scarcity of efficient ultrafast THz sources with on‐demand fast modulation and easy on‐chip integration capability. Here the discovery of colossal THz emission is reported from a van der Waals (vdW) ferroelectric semiconductor NbOI2. Using THz emission spectroscopy, a THz generation efficiency an order of magnitude higher than that of ZnTe, a standard nonlinear crystal for ultrafast THz generation is observed. The underlying generation mechanisms associated are further uncovered with its large ferroelectric polarization by studying the THz emission dependence on excitation wavelength, incident polarization, and fluence. Moreover, the ultrafast coherent amplification and annihilation of the THz emission and associated coherent phonon oscillations by employing a double‐pump scheme are demonstrated. These findings combined with first‐principles calculations, inform a new understanding of the THz light–matter interaction in emergent vdW ferroelectrics and pave the way to develop high‐performance THz devices on them for quantum materials sensing and ultrafast electronics. 
    more » « less
  3. This manuscript describes the first application of ultrafast-laser-absorption spectroscopy (ULAS) to characterizing high-pressure (up to 40 bar), multi-phase combustion gases. Single-shot measurements of temperature and CO were acquired at 5 kHz in AP-HTPB propellant flames with and without aluminum. An ultrafast light source was used to produce broadband pulses of light near 4.96 𝜇m at a repetition rate of 5 kHz and a high-speed mid-infrared imaging spectrometer was used to image the pulses across an 86 nm bandwidth with a spectral resolution of 0.7 nm. Measurements of temperature and CO concentration were obtained by least-squares fitting simulated absorbance spectra of CO to measured spectra. A system of corrective optics was used to diminish the e˙ect of beam steering during high-pressure experiments, greatly increasing the pressure capabilities of the diagnostic. The diagnostic was used to characterize AP-HTPB propellant flames in an argon bath gas at pressures of 1, 10, 20, and 40 bar. An aluminized AP-HTPB propellant was also characterized at 10 and 20 bar to demonstrate that ULAS can provide high-fidelity measurements in particulate-laden flames. The results demonstrate that ULAS is capable of providing single-shot temperature and species measurements at high pressures with 1-𝜎 precisions less than 1.1% and 3% for temperature and species respectively, despite non-absorbing transmission losses in excess of 90%. 
    more » « less
  4. Time-reversal symmetry (TRS) is pivotal for materials’ optical, magnetic, topological, and transport properties. Chiral phonons, characterized by atoms rotating unidirectionally around their equilibrium positions, generate dynamic lattice structures that break TRS. Here, we report that coherent chiral phonons, driven by circularly polarized terahertz light pulses, polarize the paramagnetic spins in cerium fluoride in a manner similar to that of a quasi-static magnetic field on the order of 1 tesla. Through time-resolved Faraday rotation and Kerr ellipticity, we found that the transient magnetization is only excited by pulses resonant with phonons, proportional to the angular momentum of the phonons, and growing with magnetic susceptibility at cryogenic temperatures. The observation quantitatively agrees with our spin-phonon coupling model and may enable new routes to investigating ultrafast magnetism, energy-efficient spintronics, and nonequilibrium phases of matter with broken TRS. 
    more » « less
  5. Interactions of quantum materials with strong laser fields can induce exotic non-equilibrium electronic states. Monolayer transition metal dichalcogenides, a new class of direct-gap semiconductors with prominent quantum confinement, offer exceptional opportunities for the Floquet engineering of excitons, which are quasiparticle electron–hole correlated states8. Strong-field driving has the potential to achieve enhanced control of the electronic band structure and thus the possibility of opening a new realm of exciton light–matter interactions. However, a full characterization of strong-field driven exciton dynamics has been difficult. Here we use mid-infrared laser pulses below the optical bandgap to excite monolayer tungsten disulfide and demonstrate strong-field light dressing of excitons in excess of a hundred millielectronvolts. Our high-sensitivity transient absorption spectroscopy further reveals the formation of a virtual absorption feature below the 1s-exciton resonance, which we assign to a light-dressed sideband from the dark 2p-exciton state. Quantum-mechanical simulations substantiate the experimental results and enable us to retrieve real-space movies of the exciton dynamics. This study advances our understanding of the exciton dynamics in the strong-field regime, showing the possibility of harnessing ultrafast, strong-field phenomena in device applications of two-dimensional materials. 
    more » « less