We study the ultrafast time resolved response of 30 nm films of VO2on a TiO2substrate when 3.1 eV (400 nm wavelength) pump pulses were used to excite the insulator to metal transition (IMT). We found that the IMT threshold for these samples (≤30µJ/cm2) is more than 3 orders of magnitude lower than that generally reported for a more traditional 1.55 eV (800 nm wavelength) excitation. The samples also exhibited unusual reflectivity dynamics at near-threshold values of pump fluence where their fractional relative reflectivity ΔR/R initially increased before becoming negative after several hundreds of picoseconds, in stark contrast with uniformly negative ΔR/R observed for both higher 400 nm pump fluences and for 800 nm pump pulses. We explain the observed behavior by the interference of the reflected probe beam from the inhomogeneous layers formed inside the film by different phases of VO2and use a simple diffusion model of the VO2phase transition to support qualitatively this hypothesis. We also compare the characteristics of the VO2films grown on undoped TiO2and on doped TiO2:Nb substrates and observe more pronounced reflectivity variation during IMT and faster relaxation to the insulating state for the VO2/TiO2:Nb sample.
more »
« less
This content will become publicly available on September 1, 2025
Probing coherent phonons in the advanced undergraduate laboratory
Ultrafast optical spectroscopy is an effective experimental technique for accessing electronic and atomic motions in materials at their fundamental timescales and studying their responses to external perturbations. Despite the important insights that ultrafast techniques can provide on the microscopic physics of solids, undergraduate students' exposure to this area of research is still limited. In this article, we describe an ultrafast optical pump-probe spectroscopy experiment for the advanced undergraduate instructional laboratory, in which students can measure coherently excited vibrations of the crystal lattice and connect their observations to the microscopic properties of the investigated materials. We designed a simple table-top apparatus based on a commercial Er-fiber oscillator emitting 50-fs pulses at 1560 nm and at 100 MHz repetition rate. We split the output into two beams, using one of them as an intense “pump” to coherently excite phonons in selected crystals, and the other as a weaker, delayed “probe” to measure the transient reflectivity changes induced by the pump. We characterize the ultrafast laser pulses via intensity autocorrelation measurements and detect coherent phonon oscillations in the reflectivity of Bi, Sb, and 1T-TaS2. We then discuss the oscillation amplitude, frequency, and damping in terms of microscopic properties of these systems.
more »
« less
- Award ID(s):
- 2132338
- PAR ID:
- 10535330
- Publisher / Repository:
- American Journal of Physics
- Date Published:
- Journal Name:
- American Journal of Physics
- Volume:
- 92
- Issue:
- 9
- ISSN:
- 0002-9505
- Page Range / eLocation ID:
- 693 to 702
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In the 60 years since the invention of the laser, the scientific community has developed numerous fields of research based on these bright, coherent light sources, including the areas of imaging, spectroscopy, materials processing and communications. Ultrafast spectroscopy and imaging techniques are at the forefront of research into the light–matter interaction at the shortest times accessible to experiments, ranging from a few attoseconds to nanoseconds. Light pulses provide a crucial probe of the dynamical motion of charges, spins, and atoms on picosecond, femtosecond, and down to attosecond timescales, none of which are accessible even with the fastest electronic devices. Furthermore, strong light pulses can drive materials into unusual phases, with exotic properties. In this roadmap we describe the current state-of-the-art in experimental and theoretical studies of condensed matter using ultrafast probes. In each contribution, the authors also use their extensive knowledge to highlight challenges and predict future trends.more » « less
-
Abstract Quantum entanglement has emerged as a great resource for spectroscopy and its importance in two-photon spectrum and microscopy has been demonstrated. Current studies focus on the two-photon absorption, whereas the Raman spectroscopy with quantum entanglement still remains elusive, with outstanding issues of temporal and spectral resolutions. Here we study the new capabilities provided by entangled photons in coherent Raman spectroscopy. An ultrafast frequency-resolved Raman spectroscopy with entangled photons is developed for condensed-phase molecules, to probe the electronic and vibrational coherences. Using quantum correlation between the photons, the signal shows the capability of both temporal and spectral resolutions not accessible by either classical pulses or the fields without entanglement. We develop a microscopic theory for this Raman spectroscopy, revealing the electronic coherence dynamics even at timescale of 50fs. This suggests new paradigms of optical signals and spectroscopy, with potential to push detection below standard quantum limit.more » « less
-
Optical control of magnons in two-dimensional (2D) materials promises new functionalities for spintronics and magnonics in atomically thin devices. Here, we report control of magnon dynamics, using laser polarization, in a ferromagnetic van der Waals (vdW) material, Fe3.6Co1.4GeTe2. The magnon amplitude, frequency, and lifetime are controlled and monitored by time-resolved pump-probe spectroscopy. We show substantial (over 25%) and continuous modulation of magnon dynamics as a function of incident laser polarization. Our results suggest that the modification of the effective demagnetization field and magnetic anisotropy by the pump laser pulses with different polarizations is due to anisotropic optical absorption. This implies that pump laser pulses modify the local spin environment, which enables the launch of magnons with tunable dynamics. Our first-principles calculations confirm the anisotropic optical absorption of different crystal orientations. Our findings suggest a new route for the development of opto-spintronic or opto-magnonic devices.more » « less
-
Abstract Ultrafast adiabatic frequency conversion is a powerful method, capable of efficiently and coherently transfering ultrashort pulses between different spectral ranges, e.g. from near-infrared to mid-infrared, visible or ultra-violet. This is highly desirable in research fields that are currently limited by available ultrafast laser sources, e.g. attosecond science, strong-field physics, high-harmonic generation spectroscopy and multidimensional mid-infrared spectroscopy. Over the past decade, adiabatic frequency conversion has substantially evolved. Initially applied to quasi-monochromatic, undepleted pump interactions, it has been generalized to include ultrashort, broadband, fully-nonlinear dynamics. Through significant theoretical development and experimental demonstrations, it has delivered new capabilities and superior performance in terms of bandwidth, efficiency and robustness, as compared to other frequency conversion techniques. This article introduces the concept of adiabatic nonlinear frequency conversion, reviews its theoretical foundations, presents significant milestones and highlights contemporary ultrafast applications that may, or already do, benefit from utilizing this method.more » « less