skip to main content


Title: Pauli blocking of atom-light scattering
Transition rates between coupled states in a quantum system depend on the density of available final states. The radiative decay of an excited atomic state has been suppressed by reducing the density of electromagnetic vacuum modes near the atomic transition. Likewise, reducing the density of available momentum modes of the atomic motion when it is embedded inside a Fermi sea will suppress spontaneous emission and photon scattering rates. Here we report the experimental demonstration of suppressed light scattering in a quantum degenerate Fermi gas. We systematically measured the dependence of the suppression factor on the temperature and Fermi energy of a strontium quantum gas and achieved suppression of scattering rates by up to a factor of 2 compared with a thermal gas.  more » « less
Award ID(s):
1734006
NSF-PAR ID:
10319266
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Science
Volume:
374
Issue:
6570
ISSN:
0036-8075
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Thermal anisotropy/isotropy is one of the fundamental thermal transport properties of materials and plays a critical role in a wide range of practical applications. Manipulation of anisotropic to isotropic thermal transport or vice versa is in increasing demand. However, almost all the existing approaches for tuning anisotropy or isotropy focus on structure engineering or materials processing, which is time and cost consuming and irreversible, while little progress has been made with an intact, robust, and reversible method. Motivated by the inherent relationship between interatomic interaction mediated phonon transport and electronic charges, we comprehensively investigate the effect of external electric field on thermal transport in two-dimensional (2D) borophene by performing first-principles calculations along with the phonon Boltzmann transport equation. Under external electric field, the lattice thermal conductivity of borophene in both in-plane directions first increases significantly to peak values with the maximum augmentation factor of 2.82, and the intrinsic anisotropy (the ratio of thermal conductivity along two in-plane directions) is boosted to the highest value of 2.13. After that, thermal conductivities drop down steeply and anisotropy exhibits oscillating decay. With the electric field increasing to 0.4 V Å −1 , the thermal conductivity is dramatically suppressed to 1/40 of the original value at no electric field. More interestingly, the anisotropy of the thermal conductivity decreases to the minimum value of 1.25, showing almost isotropic thermal transport. Such abnormal anisotropic to isotropic thermal transport transition stems from the large enhancement and suppression of phonon lifetime at moderate and high strength of electric field, respectively, and acts as an amplifying or reducing factor to the thermal conductivity. We further explain the tunability of phonon lifetime of the dominant acoustic mode by an electron localization function. By comparing the electric field-modulated thermal conductivity of borophene with the dielectric constant, it is found that the screened potential resulting from the redistributed charge density leads to phonon renormalization and the modulation of phonon anharmonicity and anisotropy through electric field. Our study paves the way for robust tuning of anisotropy of phonon transport in materials by applying intact, robust, and reversible external electric field without altering their atomic structure and would have a significant impact on emerging applications, such as thermal management of nanoelectronics and thermoelectric energy conversion. 
    more » « less
  2. Pauli blocking of spontaneous emission is responsible for the stability of atoms. Electrons cannot decay to lower-lying internal states that are already occupied. Pauli blocking also occurs when free atoms scatter light elastically (Rayleigh scattering) and the final external momentum states are already populated. This was predicted more than 30 years ago but is challenging to realize experimentally. Here, we report on Pauli blocking of light scattering in a dense quantum-degenerate Fermi gas of ultracold lithium atoms. When the Fermi momentum is larger than the photon recoil, most final momentum states are within the Fermi surface. At low temperature, we find that light scattered even at large angles is suppressed by 37% compared with higher temperatures, where atoms scatter at the single-atom Rayleigh scattering rate. 
    more » « less
  3. BACKGROUND Landau’s Fermi liquid theory provides the bedrock on which our understanding of metals has developed over the past 65 years. Its basic premise is that the electrons transporting a current can be treated as “quasiparticles”—electron-like particles whose effective mass has been modified, typically through interactions with the atomic lattice and/or other electrons. For a long time, it seemed as though Landau’s theory could account for all the many-body interactions that exist inside a metal, even in the so-called heavy fermion systems whose quasiparticle mass can be up to three orders of magnitude heavier than the electron’s mass. Fermi liquid theory also lay the foundation for the first successful microscopic theory of superconductivity. In the past few decades, a number of new metallic systems have been discovered that violate this paradigm. The violation is most evident in the way that the electrical resistivity changes with temperature or magnetic field. In normal metals in which electrons are the charge carriers, the resistivity increases with increasing temperature but saturates, both at low temperatures (because the quantized lattice vibrations are frozen out) and at high temperatures (because the electron mean free path dips below the smallest scattering pathway defined by the lattice spacing). In “strange metals,” by contrast, no saturation occurs, implying that the quasiparticle description breaks down and electrons are no longer the primary charge carriers. When the particle picture breaks down, no local entity carries the current. ADVANCES A new classification of metallicity is not a purely academic exercise, however, as strange metals tend to be the high-temperature phase of some of the best superconductors available. Understanding high-temperature superconductivity stands as a grand challenge because its resolution is fundamentally rooted in the physics of strong interactions, a regime where electrons no longer move independently. Precisely what new emergent phenomena one obtains from the interactions that drive the electron dynamics above the temperature where they superconduct is one of the most urgent problems in physics, attracting the attention of condensed matter physicists as well as string theorists. One thing is clear in this regime: The particle picture breaks down. As particles and locality are typically related, the strange metal raises the distinct possibility that its resolution must abandon the basic building blocks of quantum theory. We review the experimental and theoretical studies that have shaped our current understanding of the emergent strongly interacting physics realized in a host of strange metals, with a special focus on their poster-child: the copper oxide high-temperature superconductors. Experiments are highlighted that attempt to link the phenomenon of nonsaturating resistivity to parameter-free universal physics. A key experimental observation in such materials is that removing a single electron affects the spectrum at all energy scales, not just the low-energy sector as in a Fermi liquid. It is observations of this sort that reinforce the breakdown of the single-particle concept. On the theoretical side, the modern accounts that borrow from the conjecture that strongly interacting physics is really about gravity are discussed extensively, as they have been the most successful thus far in describing the range of physics displayed by strange metals. The foray into gravity models is not just a pipe dream because in such constructions, no particle interpretation is given to the charge density. As the breakdown of the independent-particle picture is central to the strange metal, the gravity constructions are a natural tool to make progress on this problem. Possible experimental tests of this conjecture are also outlined. OUTLOOK As more strange metals emerge and their physical properties come under the scrutiny of the vast array of experimental probes now at our disposal, their mysteries will be revealed and their commonalities and differences cataloged. In so doing, we should be able to understand the universality of strange metal physics. At the same time, the anomalous nature of their superconducting state will become apparent, offering us hope that a new paradigm of pairing of non-quasiparticles will also be formalized. The correlation between the strength of the linear-in-temperature resistivity in cuprate strange metals and their corresponding superfluid density, as revealed here, certainly hints at a fundamental link between the nature of strange metallicity and superconductivity in the cuprates. And as the gravity-inspired theories mature and overcome the challenge of projecting their powerful mathematical machinery onto the appropriate crystallographic lattice, so too will we hope to build with confidence a complete theory of strange metals as they emerge from the horizon of a black hole. Curved spacetime with a black hole in its interior and the strange metal arising on the boundary. This picture is based on the string theory gauge-gravity duality conjecture by J. Maldacena, which states that some strongly interacting quantum mechanical systems can be studied by replacing them with classical gravity in a spacetime in one higher dimension. The conjecture was made possible by thinking about some of the fundamental components of string theory, namely D-branes (the horseshoe-shaped object terminating on a flat surface in the interior of the spacetime). A key surprise of this conjecture is that aspects of condensed matter systems in which the electrons interact strongly—such as strange metals—can be studied using gravity. 
    more » « less
  4. null (Ed.)
    We use polarization-resolved electronic Raman spectroscopy to study quadrupolar charge dynamics in a nonmagnetic F e S e 1 − x S x superconductor. We observe two types of long-wavelength X Y symmetry excitations: 1) a low-energy quasi-elastic scattering peak (QEP) and 2) a broad electronic continuum with a maximum at 55 meV. Below the tetragonal-to-orthorhombic structural transition at T S ( x ) , a pseudogap suppression with temperature dependence reminiscent of the nematic order parameter develops in the X Y symmetry spectra of the electronic excitation continuum. The QEP exhibits critical enhancement upon cooling toward T S ( x ) . The intensity of the QEP grows with increasing sulfur concentration x and maximizes near critical concentration x c r ≈ 0.16 , while the pseudogap size decreases with the suppression of T S ( x ) . We interpret the development of the pseudogap in the quadrupole scattering channel as a manifestation of transition from the non-Fermi liquid regime, dominated by strong Pomeranchuk-like fluctuations giving rise to intense electronic continuum of excitations in the fourfold symmetric high-temperature phase, to the Fermi liquid regime in the broken-symmetry nematic phase where the quadrupole fluctuations are suppressed. 
    more » « less
  5. Abstract

    This paper addresses the transition from the normal to the superfluid state in strongly correlated two dimensional fermionic superconductors and Fermi gases. We arrive at the Berezinskii–Kosterlitz–Thouless (BKT) temperatureTBKTas a function ofattractivepairing strength by associating it with the onset of ‘quasi-condensation’ in the normal phase. Our approach builds on a criterion for determining the BKT transition temperature for atomic gases which is based on a well established quantum Monte Carlo analysis of the phase space density. This latter quantity, when derived from BCS–BEC crossover theory for fermions, leads to non-monotonic behavior forTBKTas a function of the attractive interaction or inverse scattering length. In Fermi gases, this implies a robust superconducting dome followed by a long tail from the flat BEC asymptote, rather similar to what is observed experimentally. For lattice systems we find thatTBKThas an absolute maximum of the order of 0.1EF. We discuss how our results compare with those derived from the Nelson–Kosterlitz criterion based on the mean field superfluid density and the approach to the transition from below. While there is agreement in the strict mean-field BCS regime at weak coupling, we find that at moderate pairing strength bosonic excitations cause a substantial increase inTBKTfollowed by an often dramatic decrease before the system enters the BEC regime.

     
    more » « less