skip to main content

Search for: All records

Award ID contains: 2016244

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We demonstrate a method to obtain homogeneous atom-cavity coupling by selecting and keeping 87Rb atoms that are near maximally coupled to the cavity's standing-wave mode. We select atoms by imposing an AC Stark shift on the ground state hyperfine microwave transition frequency with light injected into the cavity. We then induce a spin flip with microwaves that are resonant for atoms that are near maximally coupled to the cavity mode of interest, after which, we use radiation pressure forces to remove from the cavity all the atoms in the initial spin state. Achieving greater homogeneity in the atom-cavity coupling will potentially enhance entanglement generation, intracavity driving of atomic transitions, cavity-optomechanics, and quantum simulations. This approach can easily be extended to other atomic species with microwave or optical transitions.
    Free, publicly-accessible full text available October 1, 2023
  2. We propose to simulate bosonic pair creation using large arrays of long-lived dipoles with multilevel internal structure coupled to an undriven optical cavity. Entanglement between the atoms, generated by the exchange of virtual photons through a common cavity mode, grows exponentially fast and is described by two-mode squeezing (TMS) of effective bosonic quadratures. The mapping between an effective bosonic model and the natural spin description of the dipoles allows us to realize the analog of optical homodyne measurements via straightforward global rotations and population measurements of the electronic states, and we propose to exploit this for quantum-enhanced sensing of an optical phase (common and differential between two ensembles). We discuss a specific implementation based on Sr atoms and show that our sensing protocol is robust to sources of decoherence intrinsic to cavity platforms. Our proposal can open unique opportunities for the observation of continuous variable entanglement in atomic systems and associated applications in next-generation optical atomic clocks.
    Free, publicly-accessible full text available October 1, 2023
  3. Linear quantum measurements with independent particles are bounded by the standard quantum limit, which limits the precision achievable in estimating unknown phase parameters. The standard quantum limit can be overcome by entangling the particles, but the sensitivity is often limited by the final state readout, especially for complex entangled many-body states with non-Gaussian probability distributions. Here, by implementing an effective time-reversal protocol in an optically engineered many-body spin Hamiltonian, we demonstrate a quantum measurement with non-Gaussian states with performance beyond the limit of the readout scheme. This signal amplification through a time-reversed interaction achieves the greatest phase sensitivity improvement beyond the standard quantum limit demonstrated to date in any full Ramsey interferometer. These results open the field of robust time-reversal-based measurement protocols offering precision not too far from the Heisenberg limit. Potential applications include quantum sensors that operate at finite bandwidth, and the principle we demonstrate may also advance areas such as quantum engineering, quantum measurements and the search for new physics using optical-transition atomic clocks.
    Free, publicly-accessible full text available July 26, 2023
  4. Coupled harmonic oscillators are ubiquitous in physics and play a prominent role in quantum science. They are a cornerstone of quantum mechanics and quantum field theory, where second quantization relies on harmonic oscillator operators to create and annihilate particles. Descriptions of quantum tunneling, beamsplitters, coupled potential wells, "hopping terms", decoherence and many other phenomena rely on coupled harmonic oscillators. Despite their prominence, only a few experimental systems have demonstrated direct coupling between separate harmonic oscillators; these demonstrations lacked the capability for high-fidelity quantum control. Here, we realize coherent exchange of single motional quanta between harmonic oscillators -- in this case, spectrally separated harmonic modes of motion of a trapped ion crystal where the timing, strength, and phase of the coupling are controlled through the application of an oscillating electric field with suitable spatial variation. We demonstrate high-fidelity quantum state transfer, entanglement of motional modes, and Hong-Ou-Mandel-type interference. We also project a harmonic oscillator into its ground state by measurement and preserve that state during repetitions of the projective measurement, an important prerequisite for non-destructive syndrome measurement in continuous-variable quantum error correction. Controllable coupling between harmonic oscillators has potential applications in quantum information processing with continuous variables, quantum simulation, and precisionmore »measurements. It can also enable cooling and quantum logic spectroscopy involving motional modes of trapped ions that are not directly accessible.« less
    Free, publicly-accessible full text available July 1, 2023
  5. Recent advances in quantum sensors, including atomic clocks, enable searches for a broad range of dark matter candidates. The question of the dark matter distribution in the Solar system critically affects the reach of dark matter direct detection experiments. Partly motivated by the NASA Deep Space Atomic Clock (DSAC), we show that space quantum sensors present new opportunities for ultralight dark matter searches, especially for dark matter states bound to the Sun. We show that space quantum sensors can probe unexplored parameter space of ultralight dark matter, covering theoretical relaxion targets motivated by naturalness and Higgs mixing. If an atomic clock were able to make measurements on the interior of the solar system, it could probe this highly sensitive region directly and set very strong constraints on the existence of such a bound-state halo in our solar system. We present sensitivity projections for space-based probes of ultralight dark matter which couples to electron, photon, and gluon fields, based on current and future atomic, molecular, and nuclear clocks.
    Free, publicly-accessible full text available July 1, 2023
  6. Cavity QED experiments are natural hosts for non-equilibrium phases of matter supported by photon-mediated interactions. In this work, we consider a cavity QED simulation of the BCS model of superfluidity, by studying regimes where the cavity photons act as dynamical degrees of freedom instead of mere mediators of the interaction via virtual processes. We find an enhancement of long time coherence following a quench whenever the cavity frequency is tuned into resonance with the atoms. We discuss how this is equivalent to enhancement of non-equilibrium superfluidity and highlight similarities to an analogous phenomena recently studied in solid state quantum optics. We also discuss the conditions for observing this enhanced resonant pairing in experiments by including the effect of photon losses and inhomogeneous coupling in our analysis.
    Free, publicly-accessible full text available July 1, 2023
  7. We consider estimating the magnitude of a monochromatic AC signal that couples to a two-level sensor. For any detection protocol, the precision achieved depends on the signal's frequency and can be quantified by the quantum Fisher information. To study limitations in broadband sensing, we introduce the integrated quantum Fisher information and derive inequality bounds that embody fundamental tradeoffs in any sensing protocol. These inequalities show that sensitivity in one frequency range must come at a cost of reduced sensitivity elsewhere. For many protocols, including those with small phase accumulation and those consisting of π-pulses, we find the integrated Fisher information scales linearly with T. We also find protocols with substantial phase accumulation can have integrated QFI that grows quadratically with T, which is optimal. These protocols may allow the very rapid detection of a signal with unknown frequency over a very wide bandwidth.
    Free, publicly-accessible full text available July 1, 2023
  8. Homodyne measurements are a widely used quantum measurement. Using a coherent state of large amplitude as the local oscillator, it can be shown that the quantum homodyne measurement limits to a field quadrature measurement. In this work, we give an example of a general idea: injecting non-classical states as a local oscillator can led to non-classical measurements. Specifically, we consider injecting a superposition of coherent states, a Schrödinger cat state, as a local oscillator. We derive the Kraus operators and the positive operator-valued measure (POVM) in this situation and show the POVM is a reflection symmetric quadrature measurement when the coherent state amplitudes are large.
    Free, publicly-accessible full text available July 1, 2023
  9. Free, publicly-accessible full text available July 1, 2023
  10. Quantum computing promises to provide machine learning with computational advantages. However, noisy intermediate-scale quantum (NISQ) devices pose engineering challenges to realizing quantum machine learning (QML) advantages. Recently, a series of QML computational models inspired by the noise-tolerant dynamics on the brain have emerged as a means to circumvent the hardware limitations of NISQ devices. In this article, we introduce a quantum version of a recurrent neural network (RNN), a well-known model for neural circuits in the brain. Our quantum RNN (qRNN) makes use of the natural Hamiltonian dynamics of an ensemble of interacting spin-1/2 particles as a means for computation. In the limit where the Hamiltonian is diagonal, the qRNN recovers the dynamics of the classical version. Beyond this limit, we observe that the quantum dynamics of the qRNN provide it quantum computational features that can aid it in computation. To this end, we study a qRNN based on arrays of Rydberg atoms, and show that the qRNN is indeed capable of replicating the learning of several cognitive tasks such as multitasking, decision making, and long-term memory by taking advantage of several key features of this platform such as interatomic species interactions, and quantum many-body scars.
    Free, publicly-accessible full text available July 1, 2023