skip to main content


Search for: All records

Award ID contains: 2016244

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Mid-infrared (MIR) spectrometers are invaluable tools for molecular fingerprinting and hyper-spectral imaging. Among the available spectroscopic approaches, GHz MIR dual-comb absorption spectrometers have the potential to simultaneously combine the high-speed, high spectral resolution, and broad optical bandwidth needed to accurately study complex, transient events in chemistry, combustion, and microscopy. However, such a spectrometer has not yet been demonstrated due to the lack of GHz MIR frequency combs with broad and full spectral coverage. Here, we introduce the first broadband MIR frequency comb laser platform at 1 GHz repetition rate that achieves spectral coverage from 3 to 13 µm. This frequency comb is based on a commercially available 1.56 µm mode-locked laser, robust all-fiber Er amplifiers and intra-pulse difference frequency generation (IP-DFG) of few-cycle pulses inχ(2)nonlinear crystals. When used in a dual comb spectroscopy (DCS) configuration, this source will simultaneously enable measurements with μs time resolution, 1 GHz (0.03 cm−1) spectral point spacing and a full bandwidth of >5 THz (>166 cm−1) anywhere within the MIR atmospheric windows. This represents a unique spectroscopic resource for characterizing fast and non-repetitive events that are currently inaccessible with other sources.

     
    more » « less
  2. Abstract The commercialization of atomic technologies requires replacing laboratory-scale laser setups with compact and manufacturable optical platforms. Complex arrangements of free-space beams can be generated on chip through a combination of integrated photonics and metasurface optics. In this work, we combine these two technologies using flip-chip bonding and demonstrate an integrated optical architecture for realizing a compact strontium atomic clock. Our planar design includes twelve beams in two co-aligned magneto-optical traps. These beams are directed above the chip to intersect at a central location with diameters as large as 1 cm. Our design also includes two co-propagating beams at lattice and clock wavelengths. These beams emit collinearly and vertically to probe the center of the magneto-optical trap, where they will have diameters of ≈100 µm. With these devices we demonstrate that our integrated photonic platform is scalable to an arbitrary number of beams, each with different wavelengths, geometries, and polarizations. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Quantum scrambling, the distribution of information across a quantum system, can enhance precision measurements. 
    more » « less
    Free, publicly-accessible full text available June 30, 2024
  4. This article is based on an interview between the two authors. Small particles, such as single photons, electrons, atoms or charged atoms (called ions), can experience a very different world from that which we usually perceive. While in our daily life, things seem to be reasonably predictable, continuous, and well-defined, in the “quantum” world of single or small numbers of particles, there are surprises and many unexpected “non-classical” behaviors. In addition to its complexity, the world of small particles opens up some very interesting possibilities for applications to practical problems. To take advantage of the amazing properties of small particles, scientists and other researchers have developed various techniques for holding and isolating photons, electrons, atoms, and ions and manipulating their behavior. In this article, we will try to give you a glance into the fascinating lives of small particles, tell you about techniques for working with them, and mention exciting new potential applications that take advantage of their unique behaviors. 
    more » « less
    Free, publicly-accessible full text available May 31, 2024
  5. Free, publicly-accessible full text available May 1, 2024
  6. Free, publicly-accessible full text available May 1, 2024
  7. Free, publicly-accessible full text available May 1, 2024