skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Validating the Integrity of Audit Logs Against Execution Repartitioning Attacks
Provenance-based causal analysis of audit logs has proven to be an invaluable method of investigating system intrusions. However, it also suffers from dependency explosion, whereby long-running processes accumulate many dependencies that are hard to unravel. Execution unit partitioning addresses this by segmenting dependencies into units of work, such as isolating the events that processed a single HTTP request. Unfortunately, we discover that current designs have a semantic gap problem due to how system calls and application log messages are used to infer complex internal program states. We demonstrate how attackers can modify existing code exploits to control event partitioning, breaking links in the attack and framing innocent users. We also show how our techniques circumvent existing program and log integrity defenses. We then propose a new design for execution unit partitioning that leverages additional runtime data to yield verified partitions that resist manipulation. Our design overcomes the technical challenges of minimizing additional overhead while accurately connecting low level code instructions to high level audit events, in part with the use of commodity hardware processor tracing. We implement a prototype of our design for Linux, MARSARA, and extensively evaluate it on 14 real-world programs, targeted with expertly crafted exploits. MARSARA's verified partitions successfully capture all the attack provenances while only reintroducing 2.82% of false dependencies, in the worst case, with an average overhead of 8.7%. Using a new metric called Partitioning Attack Surface, we show that MARSARA eliminates 47,642 more repartitioning gadgets per program than integrity defenses like CFI, demonstrating our prototype's effectiveness and the novelty of the attacks it prevents.  more » « less
Award ID(s):
1750024 2055127
PAR ID:
10319346
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2021 ACM SIGSAC Conference on Computer and Communications Security
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    For system logs to aid in security investigations, they must be beyond the reach of the adversary. Unfortunately, attackers that have escalated privilege on a host are typically able to delete and modify log events at will. In response to this threat, a variety of secure logging systems have appeared over the years that attempt to provide tamper-resistance (e.g., write once read many drives, remote storage servers) or tamper-evidence (e.g., cryptographic proofs) for system logs. These solutions expose an interface through which events are committed to a secure log, at which point they enjoy protection from future tampering. However, all proposals to date have relied on the assumption that an event's occurrence is concomitant with its commitment to the secured log. In this work, we challenge this assumption by presenting and validating a race condition attack on the integrity of audit frameworks. Our attack exploits the intrinsically asynchronous nature of I/O and IPC activity, demonstrating that an attacker can snatch events about their intrusion out of message buffers after they have occurred but before they are committed to the log, thus bypassing existing protections. We present a first step towards defending against our attack by introducing KennyLoggings, the first kernel- based tamper-evident logging system that satisfies the synchronous integrity property, meaning that it guarantees tamper-evidence of events upon their occurrence. We implement KennyLoggings on top of the Linux kernel and show that it imposes between 8% and 11% overhead on log-intensive application workloads. 
    more » « less
  2. The OS kernel is at the forefront of a system's security. Therefore, its own security is crucial for the correctness and integrity of user applications. With a plethora of bugs continuously discovered in OS kernel code, defenses and mitigations are essential for practical kernel security. One important defense strategy is to isolate user-controlled memory from kernel-accessible memory, in order to mitigate attacks like ret2usr and ret2dir. We present EPF (Evil Packet Filter): a new method for bypassing various (both deployed and proposed) kernel isolation techniques by abusing the BPF infrastructure of the Linux kernel: i.e., by leveraging BPF code, provided by unprivileged users/programs, as attack payloads. We demonstrate two different EPF instances, namely BPF-Reuse and BPF-ROP, which utilize malicious BPF payloads to mount privilege escalation attacks in both 32- and 64-bit x86 platforms. We also present the design, implementation, and evaluation of a set of defenses to enforce the isolation between BPF instructions and benign kernel data, and the integrity of BPF program execution, effectively providing protection against EPF-based attacks. Our implemented defenses show minimal overhead (<3%) in BPF-heavy tasks. 
    more » « less
  3. Recent advances in causality analysis have enabled investigators to trace multi-stage attacks using whole- system provenance graphs. Based on system-layer audit logs (e.g., syscalls), these approaches omit vital sources of application context (e.g., email addresses, HTTP response codes) that can found in higher layers of the system. Although this information is often essential to understanding attack behaviors, incorporating this evidence into causal analysis engines is difficult due to the semantic gap that exists between system layers. To address this shortcoming, we propose the notion of universal provenance, which encodes all forensically-relevant causal dependencies regardless of their layer of origin. To transparently realize this vision on commodity systems, we present ωLOG (“Omega Log”), a provenance tracking mechanism that bridges the semantic gap between system and application logging contexts. ωLOG analyzes program binaries to identify and model application-layer logging behaviors, enabling application events to be accurately reconciled with system-layer accesses. ωLOG then intercepts applications’ runtime logging activities and grafts those events onto the system-layer provenance graph, allowing investigators to reason more precisely about the nature of attacks. We demonstrate that ωLOG is widely-applicable to existing software projects and can transparently facilitate execution partitioning of dependency graphs without any training or developer intervention. Evaluation on real-world attack scenarios shows that universal provenance graphs are concise and rich with semantic information as compared to the state-of-the-art, with 12% average runtime overhead. 
    more » « less
  4. Speculative execution attacks leverage the speculative and out-of-order execution features in modern computer processors to access secret data or execute code that should not be executed. Secret information can then be leaked through a covert channel. While software patches can be installed for mitigation on existing hardware, these solutions can incur big performance overhead. Hardware mitigation is being studied extensively by the computer architecture community. It has the benefit of preserving software compatibility and the potential for much smaller performance overhead than software solutions. This paper presents a systematization of the hardware defenses against speculative execution attacks that have been proposed. We show that speculative execution attacks consist of 6 critical attack steps. We propose defense strategies, each of which prevents a critical attack step from happening, thus preventing the attack from succeeding. We then summarize 20 hardware defenses and overhead-reducing features that have been proposed. We show that each defense proposed can be classified under one of our defense strategies, which also explains why it can thwart the attack from succeeding. We discuss the scope of the defenses, their performance overhead, and the security-performance trade-offs that can be made. 
    more » « less
  5. Recent advances in causality analysis have enabled investigators to trace multi-stage attacks using provenance graphs. Based on system-layer audit logs (e.g., syscalls), these approaches omit vital sources of application context (e.g., email addresses, HTTP response codes) that can be found in higher layers of the system. Although such information is often essential to understanding attack behaviors, it is difficult to incorporate this evidence into causal analysis engines because of the semantic gap that exists between system layers. To address that shortcoming, we propose the notion of universal provenance, which encodes all forensically relevant causal dependencies regardless of their layer of origin. To transparently realize that vision on commodity systems, we present OmegaLog, a provenance tracker that bridges the semantic gap between system and application logging contexts. OmegaLog analyzes program binaries to identify and model application-layer logging behaviors, enabling accurate reconciliation of application events with system-layer accesses. OmegaLog then intercepts applications’ runtime logging activities and grafts those events onto the system-layer provenance graph, allowing investigators to reason more precisely about the nature of attacks. We demonstrate that our system is widely applicable to existing software projects and can transparently facilitate execution partitioning of provenance graphs without any training or developer intervention. Evaluation on real-world attack scenarios shows that our technique generates concise provenance graphs with rich semantic information relative to the state-of-the-art, with an average runtime overhead of 4% 
    more » « less