skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pharmacological chaperones for the oxytocin receptor increase oxytocin responsiveness in myometrial cells
Award ID(s):
1923151
PAR ID:
10319382
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of biological chemistry
ISSN:
1083-351X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Coordinated responses to challenge are essential to survival for bonded monogamous animals and may depend on behavioral compatibility. Oxytocin (OT) context-dependently regulates social affiliation and vocal communication, but its role in pair members’ decision to jointly respond to challenge is unclear. To test for OT effects, California mouse females received an intranasal dose of OT (IN-OT) or saline after bonding with males either matched or mismatched in their approach response to an aggressive vocal challenge. Pair mates were re-tested jointly for approach response, time spent together, and vocalizations. Females and males converged in their approach after pairing, but mismatched pairs with females given a single dose of IN-OT displayed a greater convergence that resulted from behavioral changes by both pair members. Unpaired females given IN-OT did not change their approach, indicating a social partner was necessary for effects to emerge. Moreover, IN-OT increased time spent approaching together, suggesting behavioral coordination beyond a further increase in bonding. This OT-induced increase in joint approach was associated with a decrease in the proportion of sustained vocalizations, a type of vocalization that can be associated with intra-pair conflict. Our results expand OT’s effects on behavioral coordination and underscore the importance of emergent social context. 
    more » « less
  2. Social information gathering is a complex process influenced by neuroendocrine-modulated neural plasticity. Oxytocin (OXT) is a key regulator of social decision-making processes such as information gathering, as it contextually modulates social salience and can induce long-term structural plasticity, including neurogenesis. Understanding the link between OXT-induced plasticity and communicative awareness is crucial, particularly because OXT is being considered for treatment of social pathologies. We investigated the role of chronic OXT-dependent plasticity in attention to novel social information by manipulating the duration of time following cessation of intranasal treatment to allow for the functional integration of adult-born neurons resulting from OXT treatment. Following a 3-week delay, chronic intranasal OXT (IN-OXT) increased approach behavior of both female and male mice towards aggressive vocal playbacks of two unseen novel conspecifics, while no effect was observed after a 3-day delay. Immature neurons increased in the ventral hippocampus of females and males treated with chronic IN-OXT after the 3-week delay, indicating a potential association between ventral hippocampal neurogenesis and approach/acoustic eavesdropping. The less the mouse approached, the higher the level of neurogenesis. Contrary to expectations, the correlation between ventral hippocampal neurogenesis and approach behavior was not affected by IN-OXT, suggesting that other plasticity mechanisms underlie the long-term effects of chronic OXT on social approach. Furthermore, we found a negative correlation between ventral hippocampal neurogenesis and freezing behavior. Overall, our results demonstrate that chronic IN-OXT-induced long-term plasticity can influence approach to vocal information and we further reinforced the link between neurogenesis and anxiety. 
    more » « less
  3. Oxytocin is a neuropeptide positively associated with prosociality in adults. Here, we studied whether infants' salivary oxytocin can be reliably measured, is developmentally stable, and is linked to social behavior. We longitudinally collected saliva from 62 U.S. infants (44 % female, 56 % Hispanic/Latino, 24 % Black, 18 % non-Hispanic White, 11 % multiracial) at 4, 8, and 14 months of age and offline-video-coded the valence of their facial affect in response to a video of a smiling woman. We also captured infants' affective reactions in terms of excitement/joyfulness during a live, structured interaction with a singing woman in the Early Social Communication Scales at 14 months. We detected stable individual differences in infants' oxytocin levels over time (over minutes and months) and in infants' positive affect over months and across contexts (video-based and in live interactions). We detected no statistically significant changes in oxytocin levels between 4 and 8 months but found an increase from 8 to 14 months. Infants with higher oxytocin levels showed more positive facial affect to a smiling person video at 4 months; however, this association disappeared at 8 months, and reversed at 14 months (i.e., higher oxytocin was associated with less positive facial affect). Infant salivary oxytocin may be a reliable physiological measure of individual differences related to socio-emotional development. 
    more » « less
  4. Carbon fiber microelectrodes (CFMEs) have been used to detect neurotransmitters and other biomolecules using fast-scan cyclic voltammetry (FSCV) for the past few decades. This technique measures neurotransmitters such as dopamine and, more recently, physiologically relevant neuropeptides. Oxytocin, a pleiotropic peptide hormone, is physiologically important for adaptation, development, reproduction, and social behavior. This neuropeptide functions as a stress-coping molecule, an anti-inflammatory agent, and serves as an antioxidant with protective effects especially during adversity or trauma. Here, we measure tyrosine using the Modified Sawhorse Waveform (MSW), enabling enhanced electrode sensitivity for the amino acid and oxytocin peptide. Applying the MSW, decreased surface fouling and enabled codetection with other monoamines. As oxytocin contains tyrosine, the MSW was also used to detect oxytocin. The sensitivity of oxytocin detection was found to be 3.99 ± 0.49 nAμM−1, (n = 5). Additionally, we demonstrate that applying the MSW on CFMEs allows for real time measurements of exogenously applied oxytocin on rat brain slices. These studies may serve as novel assays for oxytocin detection in a fast, sub-second timescale with possible implications forin vivomeasurements and further understanding of the physiological role of oxytocin. 
    more » « less