skip to main content


Title: Robotic Grasping of Fully-Occluded Objects using RF Perception
We present the design, implementation, and evaluation of RF-Grasp, a robotic system that can grasp fully-occluded objects in unknown and unstructured environments. Unlike prior systems that are constrained by the line-of-sight perception of vision and infrared sensors, RF-Grasp employs RF (Radio Frequency) perception to identify and locate target objects through occlusions, and perform efficient exploration and complex manipulation tasks in non-line-of-sight settings.RF-Grasp relies on an eye-in-hand camera and batteryless RFID tags attached to objects of interest. It introduces two main innovations: (1) an RF-visual servoing controller that uses the RFID’s location to selectively explore the environment and plan an efficient trajectory toward an occluded target, and (2) an RF-visual deep reinforcement learning network that can learn and execute efficient, complex policies for decluttering and grasping.We implemented and evaluated an end-to-end physical prototype of RF-Grasp. We demonstrate it improves success rate and efficiency by up to 40-50% over a state-of-the-art baseline. We also demonstrate RF-Grasp in novel tasks such mechanical search of fully-occluded objects behind obstacles, opening up new possibilities for robotic manipulation. Qualitative results (videos) available at rfgrasp.media.mit.edu  more » « less
Award ID(s):
1844280
NSF-PAR ID:
10319384
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 IEEE International Conference on Robotics and Automation (ICRA)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present the design, implementation, and evaluation of RFusion, a robotic system that can search for and retrieve RFID-tagged items in line-of-sight, non-line-of-sight, and fully-occluded settings. RFusion consists of a robotic arm that has a camera and antenna strapped around its gripper. Our design introduces two key innovations: the first is a method that geometrically fuses RF and visual information to reduce uncertainty about the target object's location, even when the item is fully occluded. The second is a novel reinforcement-learning network that uses the fused RF-visual information to efficiently localize, maneuver toward, and grasp target items. We built an end-to-end prototype of RFusion and tested it in challenging real-world environments. Our evaluation demonstrates that RFusion localizes target items with centimeter-scale accuracy and achieves 96% success rate in retrieving fully occluded objects, even if they are under a pile. The system paves the way for novel robotic retrieval tasks in complex environments such as warehouses, manufacturing plants, and smart homes. 
    more » « less
  2. Mechanical search is a robotic problem where a robot needs to retrieve a target item that is partially or fully occluded from its camera. State-of-the-art approaches for mechanical search either require an expensive search process to find the target item, or they require the item to be tagged with a radio frequency identification tag (e.g., RFID), making their approach beneficial only to tagged items in the environment. We present FuseBot, the first robotic system for RF-Visual mechanical search that enables efficient retrieval of both RFtagged and untagged items in a pile. Rather than requiring all target items in a pile to be RF-tagged, FuseBot leverages the mere existence of an RF-tagged item in the pile to benefit both tagged and untagged items. Our design introduces two key innovations. The first is RF-Visual Mapping, a technique that identifies and locates RF-tagged items in a pile and uses this information to construct an RF-Visual occupancy distribution map. The second is RF-Visual Extraction, a policy formulated as an optimization problem that minimizes the number of actions required to extract the target object by accounting for the probabilistic occupancy distribution, the expected grasp quality, and the expected information gain from future actions. We built a real-time end-to-end prototype of our system on a UR5e robotic arm with in-hand vision and RF perception modules. We conducted over 180 real-world experimental trials to evaluate FuseBot and compare its performance to a of-the-art vision-based system named X-Ray. Our experimental results demonstrate that FuseBot outperforms X-Ray’s efficiency by more than 40% in terms of the number of actions required for successful mechanical search. Furthermore, in comparison to X-Ray’s success rate of 84%, FuseBot achieves a success rate of 95% in retrieving untagged items, demonstrating for the first time that the benefits of RF perception extend beyond tagged objects in the mechanical search problem. 
    more » « less
  3. null (Ed.)
    We propose a Deep Interaction Prediction Net- work (DIPN) for learning to predict complex interactions that ensue as a robot end-effector pushes multiple objects, whose physical properties, including size, shape, mass, and friction coefficients may be unknown a priori. DIPN “imagines” the effect of a push action and generates an accurate synthetic image of the predicted outcome. DIPN is shown to be sample efficient when trained in simulation or with a real robotic system. The high accuracy of DIPN allows direct integration with a grasp network, yielding a robotic manipulation system capable of executing challenging clutter removal tasks while being trained in a fully self-supervised manner. The overall network demonstrates intelligent behavior in selecting proper actions between push and grasp for completing clutter removal tasks and significantly outperforms the previous state-of-the- art. Remarkably, DIPN achieves even better performance on the real robotic hardware system than in simulation. 
    more » « less
  4. null (Ed.)
    Although general purpose robotic manipulators are becoming more capable at manipulating various objects, their ability to manipulate millimeter-scale objects are usually limited. On the other hand, ultrasonic levitation devices have been shown to levitate a large range of small objects, from polystyrene balls to living organisms. By controlling the acoustic force fields, ultrasonic levitation devices can compensate for robot manipulator positioning uncertainty and control the grasping force exerted on the target object. The material agnostic nature of acoustic levitation devices and their ability to dexterously manipulate millimeter-scale objects make them appealing as a grasping mode for general purpose robots. In this work, we present an ultrasonic, contact-less manipulation device that can be attached to or picked up by any general purpose robotic arm, enabling millimeter-scale manipulation with little to no modification to the robot itself. This device is capable of performing the very first phase-controlled picking action on acoustically reflective surfaces. With the manipulator placed around the target object, the manipulator can grasp objects smaller in size than the robot's positioning uncertainty, trap the object to resist air currents during robot movement, and dexterously hold a small and fragile object, like a flower bud. Due to the contact-less nature of the ultrasound-based gripper, a camera positioned to look into the cylinder can inspect the object without occlusion, facilitating accurate visual feature extraction. 
    more » « less
  5. Tactile sensing has been increasingly utilized in robot control of unknown objects to infer physical properties and optimize manipulation. However, there is limited understanding about the contribution of different sensory modalities during interactive perception in complex interaction both in robots and in humans. This study investigated the effect of visual and haptic information on humans’ exploratory interactions with a ‘cup of coffee’, an object with nonlinear internal dynamics. Subjects were instructed to rhythmically transport a virtual cup with a rolling ball inside between two targets at a specified frequency, using a robotic interface. The cup and targets were displayed on a screen, and force feedback from the cup-andball dynamics was provided via the robotic manipulandum. Subjects were encouraged to explore and prepare the dynamics by “shaking” the cup-and-ball system to find the best initial conditions prior to the task. Two groups of subjects received the full haptic feedback about the cup-and-ball movement during the task; however, for one group the ball movement was visually occluded. Visual information about the ball movement had two distinctive effects on the performance: it reduced preparation time needed to understand the dynamics and, importantly, it led to simpler, more linear input-output interactions between hand and object. The results highlight how visual and haptic information regarding nonlinear internal dynamics have distinct roles for the interactive perception of complex objects. 
    more » « less