skip to main content

This content will become publicly available on March 1, 2023

Title: Flux-based modeling of heat and mass transfer in multicomponent systems
In the present work, the macroscopic governing equations governing the heat and mass transfer for a general multicomponent system are derived via a systematic nonequilibrium thermodynamics framework. In contrast to previous approaches, the relative (with respect to the mass average velocity) component mass fluxes (relative species momenta) and the heat flux are treated explicitly, in complete analogy with the momentum flux. The framework followed here, in addition to allowing for the description of relaxation phenomena in heat and mass transfer, establishes to the fullest the analogy between all transport processes, momentum, heat, and mass transfer, toward which R. B. Bird contributed so much with his work. The inclusion of heat flux-based momentum as an additional variable allows for the description of relaxation phenomena in heat transfer as well as of mixed (Soret and Dufour) effects, coupling heat and mass transfer. The resulting models are Galilean invariant, thereby resolving a conundrum in the field, and always respect the second law of thermodynamics, for appropriate selection of transport parameters. The general flux-based dynamic equations reduce to the traditional transport equations in the limit when mass species and heat relaxation effects are negligible and are fully consistent with the equations established from the more » application of kinetic theory in the limit of dilute gases. As an added benefit, for the particular example case of hyperbolic diffusion we illustrate the application of the proposed models as a method to allow the use of powerful numerical solvers normally not available for solving mass transfer models more generally. « less
Authors:
; ;
Award ID(s):
1804911
Publication Date:
NSF-PAR ID:
10319399
Journal Name:
Physics of Fluids
Volume:
34
Issue:
3
ISSN:
1070-6631
Sponsoring Org:
National Science Foundation
More Like this
  1. In the study of fluid dynamics and transport phenomena, key quantities of interest are often the force and torque on objects and total rate of heat/mass transfer from them. Conventionally, these integrated quantities are determined by first solving the governing equations for the detailed distribution of the field variables (i.e. velocity, pressure, temperature, concentration, etc.) and then integrating the variables or their derivatives on the surface of the objects. On the other hand, the divergence form of the conservation equations opens the door for establishing integral identities that can be used for directly calculating the integrated quantities without requiring themore »detailed knowledge of the distribution of the primary variables. This shortcut approach constitutes the idea of the reciprocal theorem, whose closest relative is Green’s second identity, which readers may recall from studies of partial differential equations. Despite its importance and practicality, the theorem may not be so familiar to many in the research community. Ironically, some believe that the extreme simplicity and generality of the theorem are responsible for suppressing its application! In this Perspectives piece, we provide a pedagogical introduction to the concept and application of the reciprocal theorem, with the hope of facilitating its use. Specifically, a brief history on the development of the theorem is given as a background, followed by the discussion of the main ideas in the context of elementary boundary-value problems. After that, we demonstrate how the reciprocal theorem can be utilized to solve fundamental problems in low-Reynolds-number hydrodynamics, aerodynamics, acoustics and heat/mass transfer, including convection. Throughout the article, we strive to make the materials accessible to early career researchers while keeping it interesting for more experienced scientists and engineers.« less
  2. Reliable estimates of the fluxes of momentum, heat and moisture at the air–sea interface are essential for accurate long-term climate projections, as well as the prediction of short-term weather events such as tropical cyclones. In recent years, it has been suggested that these estimates need to incorporate an accurate description of the transport of sea spray within the atmospheric boundary layer and the drop-induced fluxes of momentum, heat and moisture, so that the resulting effects on atmospheric flow can be evaluated. In this paper we propose a model based on a theoretical and mathematical framework inspired from kinetic gas theory.more »This approach reconciles the Lagrangian nature of spray transport with the Eulerian description of the atmosphere. In turn, this enables a relatively straightforward inclusion of the spray fluxes and the resulting spray effects on the atmospheric flow. A comprehensive dimensional analysis has led us to identify the spray effects that are most likely to influence the speed, temperature and moisture of the airflow. We also provide an example application to illustrate the capabilities of the model in specific environmental conditions. Finally, suggestions for future work are offered.« less
  3. Abstract

    In this paper, based on simplified Boltzmann equation, we explore the inverse-design of mesoscopic models for compressible flow using the Chapman-Enskog analysis. Starting from the single-relaxation-time Boltzmann equation with an additional source term, two model Boltzmann equations for two reduced distribution functions are obtained, each then also having an additional undetermined source term. Under this general framework and using Navier-Stokes-Fourier (NSF) equations as constraints, the structures of the distribution functions are obtained by the leading-order Chapman-Enskog analysis. Next, five basic constraints for the design of the two source terms are obtained in order to recover the NSF system inmore »the continuum limit. These constraints allow for adjustable bulk-to-shear viscosity ratio, Prandtl number as well as a thermal energy source. The specific forms of the two source terms can be determined through proper physical considerations and numerical implementation requirements. By employing the truncated Hermite expansion, one design for the two source terms is proposed. Moreover, three well-known mesoscopic models in the literature are shown to be compatible with these five constraints. In addition, the consistent implementation of boundary conditions is also explored by using the Chapman-Enskog expansion at the NSF order. Finally, based on the higher-order Chapman-Enskog expansion of the distribution functions, we derive the complete analytical expressions for the viscous stress tensor and the heat flux. Some underlying physics can be further explored using the DNS simulation data based on the proposed model.

    « less
  4. We develop a new computational framework to solve the partial differential equations (PDEs) governing the flow of the joint probability density functions (PDFs) in continuous-time stochastic nonlinear systems. The need for computing the transient joint PDFs subject to prior dynamics arises in uncertainty propagation, nonlinear filtering and stochastic control. Our methodology breaks away from the traditional approach of spatial discretization or function approximation – both of which, in general, suffer from the “curse-of-dimensionality”. In the proposed framework, we discretize time but not the state space. We solve infinite dimensional proximal recursions in the manifold of joint PDFs, which in themore »small time-step limit, is theoretically equivalent to solving the underlying transport PDEs. The resulting computation has the geometric interpretation of gradient flow of certain free energy functional with respect to the Wasserstein metric arising from the theory of optimal mass transport. We show that dualization along with an entropic regularization, leads to a cone-preserving fixed point recursion that is proved to be contractive in Thompson metric. A block co-ordinate iteration scheme is proposed to solve the resulting nonlinear recursions with guaranteed convergence. This approach enables remarkably fast computation for non-parametric transient joint PDF propagation. Numerical examples and various extensions are provided to illustrate the scope and efficacy of the proposed approach.« less
  5. In this study, we investigate and develop scaling laws as a function of external non-dimensional control parameters for heat and momentum transport for non-rotating, slowly rotating and rapidly rotating turbulent convection systems, with the end goal of forging connections and bridging the various gaps between these regimes. Two perspectives are considered, one where turbulent convection is viewed from the standpoint of an applied temperature drop across the domain and the other with a viewpoint in terms of an applied heat flux. While a straightforward transformation exist between the two perspectives indicating equivalence, it is found the former provides a clearmore »set of connections that bridge between the three regimes. Our generic convection scalings, based upon an Inertial-Archimedean balance, produce the classic diffusion-free scalings for the non-rotating limit (NRL) and the slowly rotating limit (SRL). This is characterized by a free-falling fluid parcel on the global scale possessing a thermal anomaly on par with the temperature drop across the domain. In the rapidly rotating limit (RRL), the generic convection scalings are based on a Coriolis-Inertial-Archimedean (CIA) balance, along with a local fluctuating-mean advective temperature balance. This produces a scenario in which anisotropic fluid parcels attain a thermal wind velocity and where the thermal anomalies are greatly attenuated compared to the total temperature drop. We find that turbulent scalings may be deduced simply by consideration of the generic non-dimensional transport parameters --- local Reynolds $Re_\ell = U \ell /\nu$; local P\'eclet $Pe_\ell = U \ell /\kappa$; and Nusselt number $Nu = U \vartheta/(\kappa \Delta T/H)$ --- through the selection of physically relevant estimates for length $\ell$, velocity $U$ and temperature scales $\vartheta$ in each regime. Emergent from the scaling analyses is a unified continuum based on a single external control parameter, the convective Rossby number\JMA{,} $\RoC = \sqrt{g \alpha \Delta T / 4 \Omega^2 H}$, that strikingly appears in each regime by consideration of the local, convection-scale Rossby number $\Rol=U/(2\Omega \ell)$. Thus we show that $\RoC$ scales with the local Rossby number $\Rol$ in both the slowly rotating and the rapidly rotating regimes, explaining the ubiquity of $\RoC$ in rotating convection studies. We show in non-, slowly, and rapidly rotating systems that the convective heat transport, parameterized via $Pe_\ell$, scales with the total heat transport parameterized via the Nusselt number $Nu$. Within the rapidly-rotating limit, momentum transport arguments generate a scaling for the system-scale Rossby number, $Ro_H$, that, recast in terms of the total heat flux through the system, is shown to be synonymous with the classical flux-based `CIA' scaling, $Ro_{CIA}$. These, in turn, are then shown to asymptote to $Ro_H \sim Ro_{CIA} \sim \RoC^2$, demonstrating that these momentum transport scalings are identical in the limit of rapidly rotating turbulent heat transfer.« less