skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The reciprocal theorem in fluid dynamics and transport phenomena
In the study of fluid dynamics and transport phenomena, key quantities of interest are often the force and torque on objects and total rate of heat/mass transfer from them. Conventionally, these integrated quantities are determined by first solving the governing equations for the detailed distribution of the field variables (i.e. velocity, pressure, temperature, concentration, etc.) and then integrating the variables or their derivatives on the surface of the objects. On the other hand, the divergence form of the conservation equations opens the door for establishing integral identities that can be used for directly calculating the integrated quantities without requiring the detailed knowledge of the distribution of the primary variables. This shortcut approach constitutes the idea of the reciprocal theorem, whose closest relative is Green’s second identity, which readers may recall from studies of partial differential equations. Despite its importance and practicality, the theorem may not be so familiar to many in the research community. Ironically, some believe that the extreme simplicity and generality of the theorem are responsible for suppressing its application! In this Perspectives piece, we provide a pedagogical introduction to the concept and application of the reciprocal theorem, with the hope of facilitating its use. Specifically, a brief history on the development of the theorem is given as a background, followed by the discussion of the main ideas in the context of elementary boundary-value problems. After that, we demonstrate how the reciprocal theorem can be utilized to solve fundamental problems in low-Reynolds-number hydrodynamics, aerodynamics, acoustics and heat/mass transfer, including convection. Throughout the article, we strive to make the materials accessible to early career researchers while keeping it interesting for more experienced scientists and engineers.  more » « less
Award ID(s):
1702693 1749634
PAR ID:
10158678
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
879
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We formulate a class of stochastic partial differential equations based on Kelvin’s circulation theorem for ideal fluids. In these models, the velocity field is randomly transported by white-noise vector fields, as well as by its own average over realizations of this noise. We call these systems the Lagrangian averaged stochastic advection by Lie transport (LA SALT) equations. These equations are nonlinear and non-local, in both physical and probability space. Before taking this average, the equations recover the Stochastic Advection by Lie Transport (SALT) fluid equations introduced by Holm (Proc R Soc A 471(2176):20140963, 2015). Remarkably, the introduction of the non-locality in probability space in the form of momentum transported by its own mean velocity gives rise to a closed equation for the expectation field which comprises Navier–Stokes equations with Lie–Laplacian ‘dissipation’. As such, this form of non-locality provides a regularization mechanism. The formalism we develop is closely connected to the stochastic Weber velocity framework of Constantin and Iyer (Commun Pure Appl Math 61(3):330–345, 2008) in the case when the noise correlates are taken to be the constant basis vectors in $$\mathbb {R}^3$$ R 3 and, thus, the Lie–Laplacian reduces to the usual Laplacian. We extend this class of equations to allow for advected quantities to be present and affect the flow through exchange of kinetic and potential energies. The statistics of the solutions for the LA SALT fluid equations are found to be changing dynamically due to an array of intricate correlations among the physical variables. The statistical properties of the LA SALT physical variables propagate as local evolutionary equations which when spatially integrated become dynamical equations for the variances of the fluctuations. Essentially, the LA SALT theory is a non-equilibrium stochastic linear response theory for fluctuations in SALT fluids with advected quantities. 
    more » « less
  2. In the present work, the macroscopic governing equations governing the heat and mass transfer for a general multicomponent system are derived via a systematic nonequilibrium thermodynamics framework. In contrast to previous approaches, the relative (with respect to the mass average velocity) component mass fluxes (relative species momenta) and the heat flux are treated explicitly, in complete analogy with the momentum flux. The framework followed here, in addition to allowing for the description of relaxation phenomena in heat and mass transfer, establishes to the fullest the analogy between all transport processes, momentum, heat, and mass transfer, toward which R. B. Bird contributed so much with his work. The inclusion of heat flux-based momentum as an additional variable allows for the description of relaxation phenomena in heat transfer as well as of mixed (Soret and Dufour) effects, coupling heat and mass transfer. The resulting models are Galilean invariant, thereby resolving a conundrum in the field, and always respect the second law of thermodynamics, for appropriate selection of transport parameters. The general flux-based dynamic equations reduce to the traditional transport equations in the limit when mass species and heat relaxation effects are negligible and are fully consistent with the equations established from the application of kinetic theory in the limit of dilute gases. As an added benefit, for the particular example case of hyperbolic diffusion we illustrate the application of the proposed models as a method to allow the use of powerful numerical solvers normally not available for solving mass transfer models more generally. 
    more » « less
  3. In studying the transport of inclusions in multiphase systems we are often interested in integrated quantities such as the net force and the net velocity of the inclusions. In the reciprocal theorem the known solution to the first and typically easier boundary value problem is used to compute the integrated quantities, such as the net force, in the second problem without the need to solve that problem. Here, we derive a reciprocal theorem for poro-viscoelastic (or biphasic) materials that are composed of a linear compressible solid phase, permeated by a viscous fluid. As an example, we analytically calculate the time-dependent net force on a rigid sphere in response to point forces applied to the elastic network and the Newtonian fluid phases of the biphasic material. We show that when the point force is applied to the fluid phase, the net force on the sphere evolves over time scales that are independent of the distance between the point force and the sphere; in comparison, when the point force is applied to the elastic phase, the time scale for force development increases quadratically with the distance, in line with the scaling of poroelastic relaxation time. Finally, we formulate and discuss how the reciprocal theorem can be applied to other areas, including (i) calculating the network slip on the sphere's surface, (ii) computing the leading-order effects of nonlinearities in the fluid and network forces and stresses, and (iii) calculating self-propulsion in biphasic systems. 
    more » « less
  4. We consider hyper-differential sensitivity analysis (HDSA) of nonlinear Bayesian inverse problems governed by partialdifferential equations (PDEs) with infinite-dimensional parameters. In previous works, HDSA has been used to assessthe sensitivity of the solution of deterministic inverse problems to additional model uncertainties and also different types of measurement data. In the present work, we extend HDSA to the class of Bayesian inverse problems governed by PDEs. The focus is on assessing the sensitivity of certain key quantities derived from the posterior distribution. Specifically, we focus on analyzing the sensitivity of the MAP point and the Bayes risk and make full use of the information embedded in the Bayesian inverse problem. After establishing our mathematical framework for HDSA of Bayesian inverse problems, we present a detailed computational approach for computing the proposed HDSA indices. We examine the effectiveness of the proposed approach on an inverse problem governed by a PDE modeling heat conduction. 
    more » « less
  5. Specific energy and momentum are two fundamental quantities to investigate associated water depths, i.e., subcritical and super-critical, for open channel flow passing through wide rectangular channels. Historically, alternative or sequent depths were often used because there were no analytical solutions for flow depths with clear mathematical steps. In this study, we provide primarily detailed derivation procedures of the analytic solutions for the two water depths in specific momentum and energy equations without using symbolic software. More importantly, we found reciprocal relationships between the water depths of the specific energy and momentum and generalized specific energy and momentum equations for the quasi-rectangular channel geometries with varying depths. 
    more » « less