Abstract Local correlation methods rely on the assumption that electron correlation is nearsighted. In this work, we develop a method to alleviate this assumption. This new method is demonstrated by calculating the random phase approximation (RPA) correlation energies in several one‐dimensional model systems. In this new method, the first step is to approximately decompose the RPA correlation energy to the nearsighted and farsighted components based on the wavelength decomposition of electron correlation developed by Langreth and Perdew. The short‐wavelength (SW) component of the RPA correlation energy is then considered to be nearsighted, and the long‐wavelength (LW) component of the RPA correlation energy is considered to be farsighted. The SW RPA correlation energy is calculated using a recently developed local correlation method: the embedded cluster density approximation (ECDA). The LW RPA correlation energy is calculated globally based on the system's Kohn‐Sham orbitals. This new method is termedλ‐ECDA, whereλindicates the wavelength decomposition. The performance ofλ‐ECDA is examined on a one‐dimensional model system: aH24chain, in which the RPA correlation energy is highly nonlocal. In this model system, a softened Coulomb interaction is used to describe the electron‐electron and electron‐ion interactions, and slightly stronger nuclear charges (1.2e) are assigned to the pseudo‐H atoms. Bond stretching energies, RPA correlation potentials, and Kohn‐Sham eigenvalues predicted byλ‐ECDA are in good agreement with the benchmarks when the clusters are made reasonably large. We find that the LW RPA correlation energy is critical for obtaining accurate prediction of the RPA correlation potential, even though the LW RPA correlation energy contributes to only a few percent of the total RPA correlation energy.
more »
« less
Accelerate stochastic calculation of random-phase approximation correlation energy difference with an atom-based correlated sampling
A kernel polynomial method is developed to calculate the random phase approximation (RPA) correlation energy. In the method, the RPA correlation energy is formulated in terms of the matrix that is the product of the Coulomb potential and the density linear response functions. The integration over the matrix's eigenvalues is calculated by expanding the density of states of the matrix in terms of the Chebyshev polynomials. The coefficients in the expansion are obtained through stochastic sampling. Since it is often the energy difference between two systems that is of much interest in practice, another focus of this work is to develop a correlated sampling scheme to accelerate the convergence of the stochastic calculations of the RPA correlation energy difference between two similar systems. The scheme is termed the atom-based correlated sampling (ACS). The performance of ACS is examined by calculating the isomerization energy of acetone to 2-propenol and the energy of the water–gas shift reaction. Using ACS, the convergences of these two examples are accelerated by 3.6 and 4.5 times, respectively. The methods developed in this work are expected to be useful for calculating RPA-level reaction energies for the reactions that take place in local regions, such as calculating the adsorption energies of molecules on transition metal surfaces for modeling surface catalysis.
more »
« less
- Award ID(s):
- 1752769
- PAR ID:
- 10319435
- Editor(s):
- de Jong, Bert; Nieminen, Risto
- Date Published:
- Journal Name:
- Electronic structure
- Volume:
- 3
- ISSN:
- 2516-1075
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Kohn-Sham density functional theory with the available exchange–correlation functionals is less accurate for strongly correlated systems, which require a multiconfigurational description as a zero-order function, than for weakly correlated systems, and available functionals of the spin densities do not accurately predict energies for many strongly correlated systems when one uses multiconfigurational wave functions with spin symmetry. Furthermore, adding a correlation functional to a multiconfigurational reference energy can lead to double counting of electron correlation. Multiconfiguration pair-density functional theory (MC-PDFT) overcomes both obstacles, the second by calculating the quantum mechanical part of the electronic energy entirely by a functional, and the first by using a functional of the total density and the on-top pair density rather than the spin densities. This allows one to calculate the energy of strongly correlated systems efficiently with a pair-density functional and a suitable multiconfigurational reference function. This article reviews MC-PDFT and related background information.more » « less
-
Inspired by the recent work by Delacretaz et. al. [Phys. Rev. Res. 4, 033131 (2022)], we rigorously derive an exact and simple method to bosonize a non-interacting fermionic system with a Fermi surface starting from a microscopic Hamiltonian. In the long-wavelength limit, we show that the derived bosonized action is exactly equivalent to the action obtained by Delacretaz et. al. In addition, we propose diagrammatic rules to evaluate correlation functions using our bosonized theory and demonstrate these rules by calculating the three- and four-point density correlation functions. We also consider a general density-density interaction and show that the simplest approximation in our bosonic theory is identical to RPA results.more » « less
-
Standard approximations for the exchange–correlation functional in Kohn–Sham density functional theory (KS-DFT) typically lead to unacceptably large errors when applied to strongly correlated electronic systems. Partition-DFT (PDFT) is a formally exact reformulation of KS-DFT in which the ground-state density and energy of a system are obtained through self-consistent calculations on isolated fragments, with a partition energy representing inter-fragment interactions. Here, we show how typical errors of the local density approximation (LDA) in KS-DFT can be largely suppressed through a simple approximation, the multi-fragment overlap approximation (MFOA), for the partition energy in PDFT. Our method is illustrated on simple models of one-dimensional strongly correlated linear hydrogen chains. The MFOA, when used in combination with the LDA for the fragments, improves LDA dissociation curves of hydrogen chains and produces results that are comparable to those of spin-unrestricted LDA, but without breaking the spin symmetry. MFOA also induces a correction to the LDA electron density that partially captures the correct density dimerization in strongly correlated hydrogen chains. Moreover, with an additional correction to the partition energy that is specific to the one-dimensional LDA, the approximation is shown to produce dissociation energies in quantitative agreement with calculations based on the density matrix renormalization group method.more » « less
-
Strong electron correlation plays an important role in transition-metal and heavy-metal chemistry, magnetic molecules, bond breaking, biradicals, excited states, and many functional materials, but it provides a significant challenge for modern electronic structure theory. The treatment of strongly correlated systems usually requires a multireference method to adequately describe spin densities and near-degeneracy correlation. However, quantitative computation of dynamic correlation with multireference wave functions is often difficult or impractical. Multiconfiguration pair-density functional theory (MC-PDFT) provides a way to blend multiconfiguration wave function theory and density functional theory to quantitatively treat both near-degeneracy correlation and dynamic correlation in strongly correlated systems; it is more affordable than multireference perturbation theory, multireference configuration interaction, or multireference coupled cluster theory and more accurate for many properties than Kohn–Sham density functional theory. This perspective article provides a brief introduction to strongly correlated systems and previously reviewed progress on MC-PDFT followed by a discussion of several recent developments and applications of MC-PDFT and related methods, including localized-active-space MC-PDFT, generalized active-space MC-PDFT, density-matrix-renormalization-group MC-PDFT, hybrid MC-PDFT, multistate MC-PDFT, spin–orbit coupling, analytic gradients, and dipole moments. We also review the more recently introduced multiconfiguration nonclassical-energy functional theory (MC-NEFT), which is like MC-PDFT but allows for other ingredients in the nonclassical-energy functional. We discuss two new kinds of MC-NEFT methods, namely multiconfiguration density coherence functional theory and machine-learned functionals.more » « less
An official website of the United States government

