skip to main content


Title: Classical Novae at Radio Wavelengths
Abstract We present radio observations (1–40 GHz) for 36 classical novae, representing data from over five decades compiled from the literature, telescope archives, and our own programs. Our targets display a striking diversity in their optical parameters (e.g., spanning optical fading timescales, t 2 = 1–263 days), and we find a similar diversity in the radio light curves. Using a brightness temperature analysis, we find that radio emission from novae is a mixture of thermal and synchrotron emission, with nonthermal emission observed at earlier times. We identify high brightness temperature emission ( T B > 5 × 10 4 K) as an indication of synchrotron emission in at least nine (25%) of the novae. We find a class of synchrotron-dominated novae with mildly evolved companions, exemplified by V5589 Sgr and V392 Per, that appear to be a bridge between classical novae with dwarf companions and symbiotic binaries with giant companions. Four of the novae in our sample have two distinct radio maxima (the first dominated by synchrotron and the later by thermal emission), and in four cases the early synchrotron peak is temporally coincident with a dramatic dip in the optical light curve, hinting at a common site for particle acceleration and dust formation. We publish the light curves in a machine-readable table and encourage the use of these data by the broader community in multiwavelength studies and modeling efforts.  more » « less
Award ID(s):
1751874 1907790 1816100
NSF-PAR ID:
10319578
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
257
Issue:
2
ISSN:
0067-0049
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The discovery that many classical novae produce detectable GeV γ-ray emission has raised the question of the role of shocks in nova eruptions. Here, we use radio observations of nova V809 Cep (nova Cep 2013) with the Jansky Very Large Array to show that it produced non-thermal emission indicative of particle acceleration in strong shocks for more than a month starting about 6 weeks into the eruption, quasi-simultaneous with the production of dust. Broadly speaking, the radio emission at late times – more than 6 months or so into the eruption – is consistent with thermal emission from $10^{-4}\, {\rm M}_\odot$ of freely expanding, 104 K ejecta. At 4.6 and 7.4 GHz, however, the radio light curves display an initial early-time peak 76 d after the discovery of the eruption in the optical (t0). The brightness temperature at 4.6 GHz on day 76 was greater than 105 K, an order of magnitude above what is expected for thermal emission. We argue that the brightness temperature is the result of synchrotron emission due to internal shocks within the ejecta. The evolution of the radio spectrum was consistent with synchrotron emission that peaked at high frequencies before low frequencies, suggesting that the synchrotron from the shock was initially subject to free–free absorption by optically thick ionized material in front of the shock. Dust formation began around day 37, and we suggest that internal shocks in the ejecta were established prior to dust formation and caused the nucleation of dust.

     
    more » « less
  2. Abstract We present a systematic search for radio counterparts of novae using the Australian Square Kilometer Array Pathfinder (ASKAP). Our search used the Rapid ASKAP Continuum Survey, which covered the entire sky south of declination $+41^{\circ}$ ( $\sim$ $34000$ square degrees) at a central frequency of 887.5 MHz, the Variables and Slow Transients Pilot Survey, which covered $\sim$ $5000$ square degrees per epoch (887.5 MHz), and other ASKAP pilot surveys, which covered $\sim$ 200–2000 square degrees with 2–12 h integration times. We crossmatched radio sources found in these surveys over a two–year period, from 2019 April to 2021 August, with 440 previously identified optical novae, and found radio counterparts for four novae: V5668 Sgr, V1369 Cen, YZ Ret, and RR Tel. Follow-up observations with the Australian Telescope Compact Array confirm the ejecta thinning across all observed bands with spectral analysis indicative of synchrotron emission in V1369 Cen and YZ Ret. Our light-curve fit with the Hubble Flow model yields a value of $1.65\pm 0.17 \times 10^{-4} \rm \:M_\odot$ for the mass ejected in V1369 Cen. We also derive a peak surface brightness temperature of $250\pm80$ K for YZ Ret. Using Hubble Flow model simulated radio lightcurves for novae, we demonstrate that with a 5 $\sigma$ sensitivity limit of 1.5 mJy in 15-min survey observations, we can detect radio emission up to a distance of 4 kpc if ejecta mass is in the range $10^{-3}\rm \:M_\odot$ , and upto 1 kpc if ejecta mass is in the range $10^{-5}$ – $10^{-3}\rm \:M_\odot$ . Our study highlights ASKAP’s ability to contribute to future radio observations for novae within a distance of 1 kpc hosted on white dwarfs with masses $0.4$ – $1.25\:\rm M_\odot$ , and within a distance of 4 kpc hosted on white dwarfs with masses $0.4$ – $1.0\:\rm M_\odot$ . 
    more » « less
  3. null (Ed.)
    ABSTRACT V445 Puppis is the only helium nova observed to date; its eruption in late 2000 showed high velocities up to 8500 km s−1, and a remarkable bipolar morphology cinched by an equatorial dust disc. Here we present multifrequency radio observations of V445 Pup obtained with the Very Large Array (VLA) spanning 1.5–43.3 GHz, and between 2001 January and 2008 March (days ∼89–2700 after eruption). The radio light curve is dominated by synchrotron emission over these 7 yr, and shows four distinct radio flares. Resolved radio images obtained in the VLA’s A configuration show that the synchrotron emission hugs the equatorial disc, and comparisons to near-IR images of the nova clearly demonstrate that it is the densest ejecta – not the fastest ejecta – that are the sites of the synchrotron emission in V445 Pup. The data are consistent with a model where the synchrotron emission is produced by a wind from the white dwarf impacting the dense equatorial disc, resulting in shocks and particle acceleration. The individual synchrotron flares may be associated with density enhancements in the equatorial disc and/or velocity variations in the wind from the white dwarf. This overall scenario is similar to a common picture of shock production in hydrogen-rich classical novae, but V445 Pup is remarkable in that these shocks persist for almost a decade, much longer than the weeks or months for which shocks are typically observed in classical novae. 
    more » « less
  4. ABSTRACT

    We report low-frequency radio observations of the 2021 outburst of the recurrent nova RS Ophiuchi. These observations include the lowest frequency observations of this system to date. Detailed light curves are obtained by MeerKAT at 0.82 and 1.28 GHz and LOFAR at 54 and 154 MHz. These low-frequency detections allow us to put stringent constraints on the brightness temperature that clearly favour a non-thermal emission mechanism. The radio emission is interpreted and modelled as synchrotron emission from the shock interaction between the nova ejecta and the circumbinary medium. The light curve shows a plateauing behaviour after the first peak, which can be explained by either a non-uniform density of the circumbinary medium or a second emission component. Allowing for a second component in the light-curve modelling captures the steep decay at late times. Furthermore, extrapolating this model to 15 yr after the outburst shows that the radio emission might not fully disappear between outbursts. Further modelling of the light curves indicates a red giant mass-loss rate of ∼5 × 10−8 M⊙ yr−1. The spectrum cannot be modelled in detail at this stage, as there are likely at least four emission components. Radio emission from stellar wind or synchrotron jets is ruled out as the possible origin of the radio emission. Finally, we suggest a strategy for future observations that would advance our understanding of the physical properties of RS Ophiuchi.

     
    more » « less
  5. ABSTRACT

    Classical novae are shock-powered multiwavelength transients triggered by a thermonuclear runaway on an accreting white dwarf. V1674 Her is the fastest nova ever recorded (time to declined by two magnitudes is t2 = 1.1 d) that challenges our understanding of shock formation in novae. We investigate the physical mechanisms behind nova emission from GeV γ-rays to cm-band radio using coordinated Fermi-LAT, NuSTAR, Swift, and VLA observations supported by optical photometry. Fermi-LAT detected short-lived (18 h) 0.1–100 GeV emission from V1674 Her that appeared 6 h after the eruption began; this was at a level of (1.6 ± 0.4) × 10−6 photons cm−2 s−1. Eleven days later, simultaneous NuSTAR and Swift X-ray observations revealed optically thin thermal plasma shock-heated to kTshock = 4 keV. The lack of a detectable 6.7 keV Fe Kα emission suggests super-solar CNO abundances. The radio emission from V1674 Her was consistent with thermal emission at early times and synchrotron at late times. The radio spectrum steeply rising with frequency may be a result of either free-free absorption of synchrotron and thermal emission by unshocked outer regions of the nova shell or the Razin–Tsytovich effect attenuating synchrotron emission in dense plasma. The development of the shock inside the ejecta is unaffected by the extraordinarily rapid evolution and the intermediate polar host of this nova.

     
    more » « less